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Copolymer networks and stars: Scaling exponents
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We explore and calculate the rich scaling behavior of copolymer networks in solution by renormalization-
group methods. We establish a field-theoretic description in terms of composite operators. Our third-order
resummation of the spectrum of scaling dimensions brings about remarkable features: The special convexity
properties of the spectra allow for a multifractal interpretation while preserving stability of the theory. This
behavior could not be found for power-of-field operators of usualf4 field theory. The two-dimensional~2D!
limit of the mutually avoiding walk star apparently corresponds to results of a conformal Kac series. Such a
classification seems not possible for the 2D limit of other copolymer stars. We furthermore provide a consis-
tency check of two complementary renormalization schemes:« expansion and renormalization at fixed dimen-
sion, calculating a large collection of independent exponents in both approaches.@S1063-651X~97!08911-3#

PACS number~s!: 64.60.Ak, 61.41.1e, 64.60.Fr, 11.10.Gh
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I. INTRODUCTION

Recently, there has been considerable interest in the
tion of field theory and multifractals@1–4# and the associate
multifractal dimension spectra@5–10# as well as noninter-
secting random walks and their two-dimensional~2D! con-
formal theory@11–15#. We present a model of multicompo
nent polymer networks that shows a common core of th
topics and allows for a detailed study of the interrelatio
While a multifractal spectrum may be derived from the sc
ing exponents of two mutually avoiding stars of rando
walks @1,5#, a description in terms of power-of-field oper
tors seems to be ruled out by stability considerations@1#.
Here we show that already a simple product of two pow
of-field operators complies with both somewhat contrary
quirements. We start from the theory of polymer stars, s
like arrangements of polymer chains with self- and mut
excluded interactions@16,17#. We generalize this concept t
stars of chains of different polymer species that may diffe
their self- and mutual interactions. Our formalism describ
homogeneous polymer stars, stars of mutually avoid
walks, and the situation of two mutually interacting stars

Polymers and polymer solutions are among the most
tensively studied objects in condensed matter physics@18#.
The behavior of multicomponent solutions containing po
mers of different species is especially rich. Systems
chemically linked polymer chains of different species su
as block copolymers are also of considerable experime
and technical interest. Linking polymer chains of different
even contrary properties, such as hydrophile and hydroph
chains, one obtains systems with qualitatively different
havior. Here we concentrate on systems of chains in a
vent that, in a given temperature range, differ in their resp
tive steric interaction properties. We generalize the theory
multicomponent polymer solutions@19–23# to solutions of
copolymer networks, i.e., chains of different species link
at their end points in the form of stars or networks of a
topology ~see Figs.1–3!.

For solutions of polymer networks of a single species
561063-651X/97/56~6!/6370~17!/$10.00
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scaling properties have been extensively studied
renormalization-group methods~for a review see@24#!. Star
polymers as the most simple polymer networks may be p
duced by linking together the end points of polymer chains
some core molecule~Fig. 1!.

Networks of any given topology may be generated in
same way~Fig. 2!. Randomly linked polymer networks ar
also obtained as a result of a vulcanization process by
domly linking nearby monomers of different chains to ea
other.

The asymptotic properties of homogeneous systems
linear chain molecules in solution are universal in the lim
of long chains. Let us give a short account of the stand
textbook results@18,25–28#. For each system one finds
so-calledQ temperature at which the two point attractive a
repulsive interactions between the different monomers co
pensate for each other. As a result, the polymer chains
be described by random walks~up to higher-order correc

FIG. 1. Star polymer off arms linked together at pointr 0 with
extremities placed at pointsr 1 , . . . ,r f .
6370 © 1997 The American Physical Society
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56 6371COPOLYMER NETWORKS AND STARS: SCALING EXPONENTS
tions!: The mean-square distance between the chains’
points ^R2& scales with the number of monomersN like
^R2&;N. Above theQ temperature the effective interactio
between the monomers is repulsive resulting in a swelling
the polymer coil that is universal forN→`:

^R2&;N2n, ~1!

where the correlation length exponentn50.588, 3/4 in space
dimensionsd53,2. The number of configurationsZ of a
polymer chain ofN monomers grows forN→` like

Z;emNNg21, ~2!

with a nonuniversal fugacityem and a universal exponen
g51.160, 43/32 ford53,2. In the early 1970s, following
the work of de Gennes@29#, the scaling theory of polymer
was elaborated in detail using the analogy between
asymptotic properties of long polymer chains and the lo
distance correlations of a magnetic system in the vicinity
the second-order phase transition~see @18,26#!. This map-
ping allows one to receive the above-defined exponentn
andg as limits of the correlation length exponentn and the
magnetic susceptibility critical exponentg of theO(m) sym-
metric m-vector model in the formal limitm→0 @29#.

On the other hand, if polymers of different species a
present in the same solution, the scaling behavior of the
servables may be much more rich. Let us consider a solu
of two different species of polymers in some solvent, a
called ternary solution. Depending on the temperature,
system may then behave as if one or more of the inter-
intrachain interactions vanish in the sense described ab
@19–23#. This will lead to asymptotic scaling laws that ma
differ from those observed for each species alone@30#.

Interesting systems are obtained when linking toget
polymers of different species. The most simple system
this kind is a so-called block copolymer consisting of tw
parts of different species. They are of some technical imp
tance, e.g., serving as surfactants@31#. For our study they
give the most simple example of a polymer star consisting
chains of two different species@Fig. 3~a!#, which we will call
here a copolymer star. For the homogeneous polymer sta
asymptotic properties are uniquely determined by the nu
ber of its constituting chains and the dimension of space.
the number of configurations~partition function! Zf of a
polymer star off chains each consisting ofN monomers one
finds @17,24#

Zf;emN fNg f21;~R/l !h f2 fh2, N→`. ~3!

FIG. 2. Polymer networkG. It is characterized by the number
nf of f -leg vertices. Heren153, n352, n451, andn551.
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The second part shows scaling with the sizeR;Nn of the
isolated coil ofN monomers on some scalel , omitting the
fugacity factor. The exponentsg f ,h f , f 51,2,3, . . . , consti-
tute families of ‘‘star exponents,’’ which depend on the num
ber of armsf in a nontrivial way. The case of linear polyme
chains is included in this family with the expone
g5g15g2 defined in Eq.~2!. For general numbers of armsf
the star exponentsg f ,h f have no physical counterparts i
the set of exponents describing magnetic phase transiti
Nevertheless, they can be related to the scaling dimens
of composite operators of traceless symmetry in the polym
limit m→0 of theO(m) symmetricm-vector model@32,33#.
The exponentsg f have been calculated analytically in pe
turbation theory@16,17,32–34#, by exact methods in two di-
mensions@17,35#, and by Monte Carlo simulations@36,37#.

It has been shown that the scaling properties of polym
networks of arbitrary but fixed topology are uniquely defin
by its constituting stars@24#, as long as the statistical en
semble respects some conditions on the chain length di
bution @32#. Thus the knowledge of the set of star expone
g f or h f allows one to obtain the power laws correspondi
to Eq. ~3! also for any polymer network of arbitrary topo
ogy. The partition functionZG of a polymer networkG ~see
Fig. 2! of F chains each ofN monomers scales withN→`
according to@17#

ZG;emFNNn~hG2Fh2! with hG52dL1(
f >1

nfh f , ~4!

where nf is the number of vertices withf legs and
L511(( f /221)nf is the number of loops in the networkG.

In this article we address a somewhat more complex pr
lem: What happens to the scaling laws if we build a polym
star or general network of chains of different species?
view of the above-introduced ternary solutions, we th
study systems of polymer networks in which some of t
intra- and interchain interactions may vanish. For instan
there may beonly mutualexcluded-volume interactions be
tween chains of two different species in the copolymer s
shown in Fig. 3, while chains of the same species may fre
intersect. Each subset of chains of one species thus co
tutes a star of random walks avoiding the second star
random walks. Cates and Witten@5# have shown that this
problem of a star of random walks avoiding a given frac

FIG. 3. ~a! Block copolymer consisting of two polymer chain
of different species~shown by solid and thin lines! linked at their
end points.~b! Copolymer star consisting off a arms of speciesa
and f b arms of speciesb tied together at their end points.
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6372 56C. von FERBER AND YU. HOLOVATCH
structure is the key to calculating the multifractal spectr
of absorption of diffusing particles on this fractal. This ca
culation can be performed explicitly for the diffusion ne
absorbing polymers@5,38#.

The setup of our article is as follows. In Sec. II we intr
duce notation and relate the polymer model to a Lagrang
field theory. This field-theoretical formalism will be use
throughout the paper. In Sec. III we define t
renormalization-group procedures. We present two alte
tive approaches: zero mass renormalization together with
« expansion~see e.g.,@39#! and massive renormalization at
fixed dimension@40#. Section IV is devoted to the study o
the renormalization-group flow of the ternary model and
fixed points. Series for critical exponents governing the sc
ing behavior of copolymer stars and stars of mutually avo
ing walks are obtained in Sec. V. In Sec. VI we discuss
problem of resummation of the asymptotic series arising
this context. Numerical results are presented in Sec. VII.
close with concluding remarks and an outlook on poss
applications of the theory in Sec. VIII and give some calc
lational details in Appendixes. We have announced som
our main results in a Letter@41#.

II. MODEL AND NOTATIONS

Let us first take a look at the model we use to descr
polymers. In a first discrete version we describe a configu
tion C of the polymer by a set of positions of segment e
points:

C$r 1 , . . . ,r N%PRd3N.

Its statistical weight~Boltzmann factor! with the Hamil-
tonianH divided by the product of the Boltzmann consta
kB and temperatureT will be given by

expF2
1

kBT
HG5expH 2

1

4l 0
2 (

j 51

N

~r j2r j 21!2

2bl 0
d (

iÞ j 51

N

dd~r i2r j !J . ~5!

The first term describes the chain connectivity and the
rameterl 0 governs the mean-sqare segment length. The
ond term describes the excluded-volume interaction forb
ding two segment end points to take the same position
space. The parameterb gives the strength of this interaction
The third parameter in our model is the chain length or nu
ber of segmentsN. The partition functionZ is calculated as
an integral over all configurations of the polymer divided
the system volumeV, thus dividing out identical configura
tions just translated in space:

Z~N!5
1

VE )
i 51

N

driexpF2
1

kBT
H$r i%G . ~6!

This will give us the ‘‘number of configurations’’ of the
polymer ~2!. We will do our investigations by mapping th
n
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polymer model to a renormalizable field theory making u
of well-developed formalisms~see@18,26# for example!. To
this end we introduce a continuous version of our model
proposed by Edwards@42,43#, generalizing it to describe a
set of f polymer chains of varying composition possibly tie
together at their end points. The configuration of one po
mer is now given by a pathr a(s) in d-dimensional spaceRd

parametrized by a surface variable 0<s<Sa . We now allow
for a symmetric matrix of excluded-volume interactionsuab
between chainsa,b51, . . . ,f . The HamiltonianH is then
given by

1

kBT
H~r a!5 (

a51

f E
0

Sa
dsS dra~s!

2ds D 2

1
1

6 (
a,b51

f

uabE ddr ra~r !rb~r !, ~7!

with densitiesra(r )5*0
Sads dd

„r 2r a(s)…. In this formalism
the partition function is calculated as a functional integra

Zf$Sa%5E D@r a~s!#expH 2
1

kBT
H~r a!J . ~8!

Here the symbolD@r a(s)# includes normalization such tha
Z$Sa%51 for all uab50. To make the exponential ofd func-
tions in Eq.~8! and the functional integral well defined in th
bare theory a cutoffs0 is introduced such that all simulta
neous integrals of any variabless ands8 on the same chain
are cut off byus2s8u.s0. Let us note here that the continu
ous chain model~7! may be understood as a limit of discre
self-avoiding walks, when the length of each step is decre
ing l 0→0 while the number of stepsNa is increasing, keep-
ing the ‘‘Gaussian surface’’Sa5Nal 0

2 fixed. The continuous
chain model~8! can be mapped onto a corresponding fie
theory by a Laplace transform in the Gaussian surface v
ablesSa to conjugate chemical potentials~‘‘mass variables’’!
ma @30#:

Z̃f$ma%5E
0

`

)
b

dSbe2mbSbZf$Sa%. ~9!

The Laplace-transformed partition functionZ̃f$ma% can be
expressed as them50 limit of the functional integral over
vector fields fa , a51, . . . ,f , with m components
fa

a , a51, . . . ,m:

Z̃f$mb%5E D@fa~r !#exp@2L$fb ,mb%# um50 . ~10!
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The Landau-Ginzburg-Wilson LagrangianL of f interacting
fields fb , each withm components, reads

L$fb ,mb%5
1

2 (
a51

f E ddr $mafa
21@¹fa~r !#2%

1
1

4! (
a,a851

f

ua,a8E ddr fa
2~r !fa8

2
~r !, ~11!
sio
c
e-

it
e
s

wherefa
25(a51

m (fa
a)2. The limit m50 in Eq. ~10! can be

understood as a selection rule for the diagrams contribu
to the perturbation theory expansions, which can be ea
checked diagrammatically. A formal proof of Eq.~11! using
the Stratonovich-Hubbard transformation to linearize ter
in Eq. ~7! is given for the multicomponent case in@30#. The
one-particle irreducible vertex functionsG (L)(qi) of this
theory are defined by
nd

om
dS ( qi DGa1, . . . ,aL

~L ! ~qi !5E eiqi r idr1•••drL^fa1
~r 1!•••faL

~r L!&1PI,m50
L . ~12!

The averagê & in Eq. ~12! is understood with respect to the Lagrangian~11! keeping only those contributions that correspo
to one-particle irreducible graphs and have nonvanishing tensor factors in the limitm50. The partition functionZ* f$Sa% of
a polymer star consisting off polymers of different species 1,. . . ,f constrained to have a common end point is obtained fr
Eq. ~8! by introducing an appropriate product ofd functions ensuring the ‘‘starlike’’ structure. It reads

Z* f$Sa%5E D@r a#expH 2
1

kBT
H~r a!J )

a52

f

dd
„rWa~0!2rW1~0!…. ~13!

The vertex part of its Laplace transformation may be defined by

dS p1( qi DG~* f !~p,q1, . . . ,qf !5E ei ~pr01qi r i !ddr 0ddr 1•••ddr f^f1~r 0!•••f f~r 0!f1~r 1!•••f f~r f !&1PI,m50
L , ~14!
te
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where alla1 , . . . ,af are distinct. The vertex functionG (* f ) is
thus defined by insertion of the composite operator)afa .
Its scaling properties are governed by the scaling dimen
of this operator. When only one species is present one
also defineG* f by insertion of a composite operator of trac
less symmetry@33#. In the following we will be mainly in-
terested in the case of only two species of polymers, w
interactionsu11,u22 between the polymers of the same sp
cies andu125u21 between the polymers of different specie
In this case the composite operator in Eq.~14! reduces to the
n
an

h
-
.

product of two power-of-field operators with appropria
symmetry (f) f 1(f8) f 2, each corresponding to a product
fields of the same ‘‘species.’’ Nevertheless, our results
easily generalized to the case of any number of polym
species.

The starting point for our calculations are the three-lo
expansions for the bare vertex functions of inter
(]/]k2)G (2), G (4), andG (* f ). They involve the loop integrals
D2 andI 12I 8. These are given in Appendix A together wit
their corresponding graphs. The expressions read
]

]k2
G~aa!

~2! 512
1

9
I 2uaa

2 1
4

27
I 8uaa

3 , ~15!

G~aaaa!
~4! 5uaa2

4

3
D2

aauaa
2 1S 5

9
D2

21
22

9
I 1Duaa

3 2S 2

9
D2

31
28

27
I 1D21

8

27
I 31

40

9
I 41

58

27
I 51

14

27
I 61

22

27
I 7Duaa

4 , ~16!

G~* f !511D2
a1a2 ū a1a2

/21D2
2 ū a1a2

ū a3a4
/81 ū a1a2

ū a1a3
I 11 ū a1a1

ū a1a2
I 11~ I 11D2

2! ū a1a2

2 /21D2
3 ū a1a2

ū a3a4
ū a5a6

/48

1D2 ū a1a2
ū a1a3

ū a4a5
I 1/21 ū a1a2

ū a1a3
ū a3a4

I 41~ I 51I 6! ū a1a2
ū a1a3

ū a2a4
/21 ū a1a2

ū a1a3
ū a1a4

I 41~3I 41I 7!

3 ū a1a2
ū a1a3

ū a2a3
/31D2~ I 11D2

2! ū a1a2

2 ū a3a4
/41~D2I 112I 412I 51I 7! ū a1a2

2 ū a1a3
1~ I 313I 41I 5!

3 ū a1a1

2 ū a1a2
1~D2I 112I 41I 51I 61D2

3! ū a1a2

3 /21D2 ū a1a1
ū a1a2

ū a3a4
I 1/21~ I 41I 5! ū a1a1

ū a1a2
ū a2a3

1~ I 41I 51I 7! ū a1a1
ū a1a2

ū a1a3
1 ū a1a1

ū a1a2
ū a2a2

I 5/21~D2I 114I 41I 6! ū a1a1
ū a1a2

2 . ~17!
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6374 56C. von FERBER AND YU. HOLOVATCH
In Eq. ~17! summation overai51, . . . ,f is assumed. Equa
tions ~15!–~17! apply to any number of polymer species. F
a star off 1 chains of species 1 andf 2 chains of species 2 we
restricta51,2 in Eqs.~15! and~16! and the matrix of inter-
actionsū ab is given by

ū ab
f 1f 25H u11, 1<a,b< f 1

u22, f 1,a,b< f

u12, otherwise.

Let us define in this way

G~* f 1f 2!5G~* f !u ūab5 ū
ab

f 1f 2 . ~18!

For generalf 1 , f 2 the corresponding combinatorics may al
be directly calculated by summation overai51,2 instead.
Replacing ū aiaj

5uaiaj
, each term in the sum with indice

a1 , . . . ,ak then acquires a factor

S f 1

N1~a1 , . . . ,ak!
D S f 2

N2~a1, . . . ,ak!
D .

Here N1(a1 , . . . ,ak) is the number ofai51, whereas
N2(a1 , . . . ,ak) is the number ofai52.

As a special case we may derive the vertex functionG1122
(4)

for the u12 interaction using the relation G (* 22)

5]/]u12G1122
(4) , which is obvious from the perturbatio

theory ~see@30# for instance!:

G1122
~4! 5E du12G

~* 22!.

Note that the vertex functionsG (* 20) and G (* 11) define a
vertex function with af2 insertion which in standard litera
ture is denoted byG (2,1) @39#. With the same formalism we
can also describe a star off mutually avoiding walks@11,12#.
In this case all interactions on the same chainū aa vanish and
only thoseū ab with aÞb remain:

GMAW
~* f ! 5G~* f !u ūab5~12dab!u12

. ~19!

In this case each term with indicesa1 , . . . ,ak acquires a
factor (f /k)k!.

As is well known, ultraviolet divergences occur when t
vertex functions~15!–~17! are evaluated naively@44#. In the
next section we apply the field-theoretic renormalizatio
group approach to remove the divergences and to m
transparent the scaling symmetry of the problem.

III. RENORMALIZATION

We apply renormalization-group~RG! theory to make use
of the scaling symmetry of the system in the asymptotic lim
to extract the universal content and at the same time rem
divergences that occur for the evaluation of the bare fu
tions in this limit @39,44,45#. The theory given in terms o
the initial bare variables is mapped to a renormalized the
This is achieved by a controlled rearrangement of the se
for the vertex functions. Several asymptotically equivale
procedures serve this purpose. Here we will use two so
-
ke

t
ve
-

y.
es
t
e-

what complementary approaches: zero mass renormaliza
~see@39# for instance! with a successive« expansion@46#
and the fixed-dimension massive RG approach@40#. The first
approach is performed directly for the critical point. Resu
for critical exponents at physically interesting dimensio
d52 and 3 are calculated in an«542d expansion@46–49#.
The second approach renormalizes off the critical limit b
calculates the critical exponents directly in space dimensi
d52,3 @50,51#. It also gives quantitative results for th
preasymptotic critical behavior@52,53#. Most authors tend to
prefer one method and to exclude the other for nonobvi
reasons. The application of both approaches will enable u
particular to check the consistency of approximations and
accuracy of the results obtained.

Let us formulate the relations for a renormalized theory
terms of the corresponding renormalization conditio
Though they are different in principle for the two proc
dures, we may formulate them simultaneously using
same expressions. Note that the polymer limit of zero co
ponent fields leads to essential simplification. Each fieldfa ,
massma , and couplinguaa renormalizes as if the other field
were absent. First we introduce renormalized couplingsgab
by

uaa5m«Zfa

22Zaagaa , a51,2 ~20!

u125m«Zf1

21Zf2

21Z12g12. ~21!

Herem is a scale parameter equal to the renormalized m
at which the massive scheme is evaluated and sets the
of the external momenta in the massless scheme. The re
malization factorsZfa

,Zab are defined as power series in th
renormalized couplings that fulfill the RG conditions

Zfa
~gaa!

]

]k2
Gaa

~2!
„uaa~gaa!…51, ~22!

Zfa

2 ~gaa!Gaaaa
~4!

„uaa~gaa!…5m«gaa , ~23!

Zf1
~g11!Zf2

~g22!G1122
~4!

„uab~gab!…5m«g12. ~24!

These formulas are applied perturbatively while the cor
sponding loop integrals are evaluated for zero external m
menta in the massive approach and for external momen
the scale ofm in the massless approach as explained in A
pendix A. In the massive case the RG condition for the v
tex functionG (2) reads

Zfa
~gaa!Gaa

~2!
„uaa~gaa!…uk2505m2, a51,2. ~25!

In the case of massless renormalization the correspon
condition reads@39#:

Zfa
~gaa!Gaa

~2!
„uaa~gaa!…uk25050, a51,2. ~26!

In order to renormalize the star vertex functions we introdu
renormalization factorsZ* f 1 , f 2

by

Zf1

f 1/2Zf2

f 2/2Z* f 1 , f 2
G~* f 1f 2!

„uab~gab!…5md f 11 f 2. ~27!
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In the same way we define the appropriate renormaliza
for the vertex function of mutually avoiding walks~MAWs!

Zf1

f /2Z~MAW f !GMAW* f
„u12~gab!…5md f . ~28!

The powers ofm absorb the engineering dimensions of t
bare vertex functions. These are given by

d f5 f ~«/221!142 «. ~29!

The renormalized couplingsgab defined by relations~20!
and~21! depend on the scale parameterm. The renormaliza-
tion Z factors are power series ingab and thus implicitly
depend onm. This dependence is expressed by the RG fu
tions defined by the relations

m
d

dm
gab5bab~ga8b8!, ~30!

m
d

dm
lnZfa

5hfa
~gaa!, ~31!

m
d

dm
lnZ* f 1f 2

5h* f 1f 2
~gab!, ~32!

m
d

dm
lnZMAW f5h f

MAW~gab!. ~33!

The functionhfa
describes the pair-correlation critical exp

nent, while the functionsh* f 1f 2
and h f

MAW(gab) define the
set of exponents for copolymer stars and stars of mutu
avoiding walks. Note thatZ* 20 renormalizes the vertex func
tion with a f2 insertion that coincides withG (* 20). Conse-
quently, the usually defined correlation length critical exp
nentn is expressed in terms of functionsh* 20 andhf ~see
the next section!. Explicit expressions for theb andh func-
tions will be given in the next section together with a stu
of the RG flow and the fixed points of the theory.

IV. RENORMALIZATION-GROUP FLOW
AND THE FIXED POINTS:

« EXPANSION AND PSEUDO-« EXPANSION

Here we discuss the RG flow of the theory presented
Sec. III. In particular, we want to find appropriate represe
tations for the fixed points of the flow. In a study devoted
ternary polymer solutions, the RG flow has been calcula
@30# within massless renormalization and is known to t
third-loop order of the« expansion. Note that for the diago
nal coupling gaa the corresponding expressions are a
found in the polymer limitm50 of theO(m) symmetricf4

model. They are known in even higher orders of perturbat
theory @54#. To third-loop order the expressions read

bgaa

« 52«gaa1
1

3
~412«12«2!gaa

2

2
1

9S 21

2
1

215

8
«211J« Dgaa

3

n

-

ly

-

n
-

d

o

n

1
1

27
@79222J133z~3!#gaa

4 1O~gaa
5 !,

a51,2 ~34!

bg12

« 52«g121
1

3S 11
«

2
1

«2

2 D ~g111g22!g12

1
1

3
~21«1«2!g12

2 2
1

9S 5

4
1

55

16
«2

3

2
J« D ~g11

2 1g22
2 !

3g122
1

9S 31
15

2
«23J« D ~g111g22!g12

2

2
1

9
~215«22J«!g12

3 1
1

54
~152J!~g11

3 1g22
3 !g12

1
1

27S 27

2
19z~3!26JD ~g11

2 1g22
2 !g12

2 1
1

27
~723J!

3g11g22g12
2 1

1

27
@1216z~3!22J#~g111g22!g12

3

1
1

27
@613z~3!22J#g12

4 1O~g5!. ~35!

Here the Riemann zeta function withz(3)'1.202 and the
constantJ'0.7494 occur. We use an index« at b« to dis-
tinguish theb functions obtained in massless renormaliz
tion with a successive« expansion frombm obtained in mas-
sive field theory.

Similarly, performing renormalization in the massiv
scheme, we obtain the corresponding functionsbm. We
present them using convenient variablesvab5D2

mgab and in-
troduce new functionsbvab

m 5D2
mbgab

m . HereD2
m is the one-

loop integral calculated within massive field theory~see ap-
pendix A!. This procedure defines a convenient numeri
scale for the massiveb functions. The expressions for th
functionsbvab

m read

bvaa

m 52~42d!vaaH 12
4vaa

3
1

2

9F22S i 12
1

2D12i 2Gvaa
2

1
2

27
~2891310i 118i 213i 2d212i 32180i 4287i 5

221i 6233i 7212i 8!vaa
3 J 1O~v5!, a51,2. ~36!

bv12

m 52~42d!v12F12
1

3
~v111v2212v12!1

1

3S 2v11
2 2v22

2

22v12v112
4v12

2

3
22v12v221

2v12
2 i 2

3
1

8v12
2 i 1

3

14v12v22i 112v11
2 i 11

2v22
2 i 2

3
14v12v11i 112v22

2 i 1D
1(

j ,k,l
bjklv11

j v22
k v12

l G1O~v5!. ~37!
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Here i j are the dimension-dependent loop integrals, norm
ized by the one-loop integral value~see Appendix A!. Ex-
pressions for the coefficientsbjkl are given in Appendix B.
Note that theb function for the diagonal couplinggaa is
known within the massive scheme@50# to the order of six
loops @55#.

Let us solve the equations for the fixed points~FPs!
P($g11* ,g22* ,g12* %) of the b functions,

bgaa

« ~gaa* !50, a51,2 ~38a!

bg12

« ~g11* ,g22* ,g12* !50. ~38b!

As is well known, Eq.~38a! has two solutionsgaa* 50,gS* .
For Eq.~38b! one finds a total of eight FPs depending on t
choice of gaa* . The trivial FPs are G0(0,0,0),
U0(gS* ,0,0), U08(0,gS* ,0), andS0(gS* ,gS* ,0), all correspond-
ing to g12* 50. The nontrivial FPs are found asG(0,0,gG* ),
U(gS* ,0,gU* ), U8(0,gS* ,gU* ), andS(gS* ,gS* ,gS* ). In the three-
dimensional space of couplingsg11,g22,g12 these FPs are
placed at the corners of a cube deformed in theg12 direction
~see Fig. 4!. Their « expansions read@30#

gG* 5
3«

2
2S J1

3

2
z~3! D3«3

8
, ~39!

gU* 5
9«

8
1

39«2

256
1S 267

4096
2

693

1024
z~3!2

189

512
JD «3,

~40!

gS* 5
3«

4
1

15«2

128
1S 111

2048
2

99

256
z~3!2

33

128
JD «3. ~41!

For the evaluation of the fixed points of theb functions
calculated in the massive scheme~36! and~37! ~as well as of
the other quantities of the theory!, one has several alterna
tives. The first possibility is to introduce« expansions for the
loop integrals. For massive renormalization these are kno
for the one- and two-loop integrals~see@45#!:

FIG. 4. Fixed points~FPs! of ternary polymer solution. The
trivial FPsG0, U0, U08 , andS0 correspond to the vanishing mutu
interaction. The nontrivial FPsG, U, U8, andS correspond to the
nonvanishing mutual interaction (g12Þ0).
l-

n

D2
m5

1

«S 12
«

2D1O~«!, i 15
1

2
1

«

4
1O~«2!,

i 252
«

8
1O~«2!. ~42!

A second possibility is to proceed directly in a fixed d
mension of spaced52 or 3 substituting numerical values fo
the loop integrals@56,57#. For the massive two-loop« ex-
pansion the fixed points read

gS* 5
3«

4
1

111«2

128
, ~43!

gU* 5
9«

8
1

327«2

256
, ~44!

gG* 5
3«

2
1

3«2

2
. ~45!

Only the first order of these results coincides with the fixe
point values of the massless renormalization scheme@30#. It
is well known that the values ofb functions, fixed points,
and other intermediate functions in general depend on
RG scheme; only the critical exponents and other obse
ables will be independent of the scheme followed.

We will now study expressions~36! and~37! directly at a
fixed dimension. In this scheme the usual way of finding
fixed points ofb functions of models with several coupling
involves the numerical solution of the system of equatio
~38!. To this end the asymptotic series in the coupling co
stants are represented in the form of corresponding
summed expressionsb res @58#. However, the numerical solu
tion of the resummed fixed-point equation in general lead
inconsistent results, as we will show in Sec. VI. An altern
tive to this procedure and thus a third possibility to proce
was originally proposed by Nickel and may be called
pseudo-« expansion@59#. To our knowledge, it has not, unti
now, been applied to theories with several couplings~see
@51#!, although it seems a convenient tool to circumvent
specific difficulties arising for the massive approach. To a
ply this method, we introduce the ‘‘pseudo-e ’’ parametert
into the expressions for theb functions bvaa

m ,bv12

m in Eqs.

~36! and ~37! as

2bvaa

m /~42d!vaa5t2
4vaa

3
1•••, a51,2,

2bv12

m /~42d!v125t2
1

3
~v111v2212v12!1•••. ~46!

We solve for the fixed-point solutions as series int. The
resulting series for the fixed points then either can be
summed~to obtain the numerical values of the fixed point!
or can be substituted into the expansions for the observa
of the theory. In the final results we substitutet51.

Performing this procedure, we get the fixed-point valu
as series in the pseudo-e parametert up to the ordert3:
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vG53/2t1~3 i 123/2!t21S 2
9i 6

8
2

9i 1

4
13/8112i 1

22
9i 4

2

2
27i 5

8
2

9i 7

8 D t3, ~47!

vU5
9t

8
1S 93i 1

32
2

93

64
1

3i 2

32 D t22S 387i 6

512
1

9i 8

64
1

33i 2

64

1
1281i 1

256
2

459

512
1

693i 7

512
1

27i 3

128
1

369i 4

64
1

1485i 5

512
2

3i 2
2

64

2
9i 2i 1

8
2

969i 1
2

64
2

27di2
512 D t3, ~48!

vS53/4t1S 3 i 2

16
1

33 i 1

16
2

33

32D t21S 3/42
27i 2

32
2

261i 5

128

2
135i 4

32
2

261i 1

64
2

63i 6

128
1

3i 2
2

32
1

33i 2i 1

16
1

9di2
128

2
99i 7

128

2
9i 8

32
2

9i 3

32
1

363i 1
2

32 D t3. ~49!

Expressions~39!–~41! @30# and ~36!–~49! give the fixed-
point values of ternary solutions in the massless and mas
renormalization schemes and are the main results to be
in the subsequent calculations.

Looking for the stability of the above-described fixe
points, one finds that only the fixed pointS is stable@30#. In
the excluded-volume limit of infinitely long chains, the b
havior of a system of two polymer species is thus descri
by the same scaling laws as a solution of only one polym
species. Nevertheless, taking into account that real poly
chains are not infinitely long, one may also find crosso
phenomena that are governed by the unstable fixed po
Knowing the complete RG flow allows one to describe cro
over phenomena in the whole accessible region@30#. How-
ever, for the purpose of our study we are interested only
the values of the fixed points and the properties of the
vertex functions at these fixed points.

V. RESULTS FOR EXPONENTS

For homogeneous stars of polymer chains of one spe
alone, several sets of star exponents have been defined,
describing either the scaling properties of the configuratio
number @see formula~3! of this article# or the anomalous
dimensions of star vertices, etc. Due to scaling relatio
these exponents can be expressed in terms of each other@24#.
In this sense, each set of star exponents forms a comp
basis. For the copolymer and MAW stars, we here choos
present our results in terms of the exponentsh f 1f 2

andh f
MAW

given by the fixed-point values of the functionsh* f 1f 2
(gab)

~32! andh f
MAW(gab) ~33!. Let us define the asymptotic va

ues of copolymer star exponents and MAW star expone
by

h f 1f 2

S 5h* f 1f 2
~gab!uS , ~50!
ve
ed

d
r

er
r
ts.
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in
ar

es
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al

s,

te
to

ts

h f 1f 2

G 5h* f 1f 2
~gab!uG , ~51!

h f 1f 2

U 5h* f 1f 2
~gab!uU5h* f 2f 1

~gab!uU8, ~52!

h f
MAW5h f

MAW~gab!uG . ~53!

The exponent in the symmetrical FPS can also be expresse
by h f 1f 2

S 5h f 11 f 2,0
U . Starting from the expressions for th

fixed points given in Sec. IV and relations~50!–~53!, we find
the series for the star exponents. In the« expansion we ob-
tain the following expansions forh f 1f 2

:

h f 1f 2

G ~«!52 f 1f 2

«

2
1 f 1f 2~ f 2231 f 1!

«2

8

2 f 1f 2~ f 2231 f 1!@ f 11 f 213 z~3!23#
«3

16
,

~54!

h f 1f 2

U ~«!5 f 1~12 f 123 f 2!
«

8
1 f 1~25233f 118 f 1

2291f 2

142f 1f 2118f 2
2!

«2

256
1 f 1@5772969f 11456f 1

2

264f 1
322463f 212290f 1f 22492f 1

2f 211050f 2
2

2504f 1f 2
22108f 2

32712z~3!1936f 1z~3!

2224f 1
2z~3!12652f 2z~3!21188f 1f 2z~3!

2540f 2
2z~3!#

«3

4096
, ~55!

h f 1f 2

MAW~«!52~ f 121! f 1

«

4
1 f 1~ f 121!~2 f 125!

«2

16

2~ f 121! f 1@4 f 1
2220f 118 f 1z~3!

219z~3!125#
«3

32
. ~56!

Here z(3).1.202 is the Riemann zeta function. The abo
formulas reproduce the third-order calculations of the sca
exponents of homogeneous polymer starsg f21
5n(h f ,0

U 2 f h2,0
U ) @32#. The exponentsl (xx) given to second

order in Eqs.~xx! of @5# to describe the multifractal scalin
properties of a Laplacian field with fractal boundary con
tions are reproduced following l (29)(n)52h2,n

G ,
l (47)(n)52h2,n

U 1h2,0
U , le

(48)(n)52h1,n
G , and le

(49)(n)
52h1,n

U , correcting a misprint in Eq.~49! of @5#. Also the
second-order results for exponents xL,n2xL,1

522(hL,n
G 2hL,1

G ) of @1# and the MAW exponents
sL51/2hL

MAW defined in@11# find their third-order extension
by the above expansions. The pseudo-« expansions forh f 1f 2

obtained in the massive scheme read

h f 1f 2

G 5te
f 1f 2

2 F211~ f 2231 f 1!S t ~ i 121/2!1
t2

8
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TABLE I. Values of the copolymer star exponenth f 1f 2
obtained in the first, second, and third order in t

Gaussian (G) fixed point in the« expansion and pseudo-« (t) expansion for different values off 1 , f 2 at
«51 (d53). R stands for the results obtained by Pade´-Borel resummation of the three-loop series.

f 1 f 2 ;« ;«2 ;«3 R ;t ;t2 ;t3 R

1 1 20.50 20.63 20.46 20.56 20.50 20.58 20.56 20.57
1 2 21.00 21.00 21.00 21.00 21.00 21.00
1 3 21.50 21.13 21.99 21.36 21.50 21.25 21.42 21.34
2 2 22.00 21.50 22.65 21.81 22.00 21.67 21.93 21.80
2 3 23.00 21.50 25.71 22.50 23.00 22.00 23.01 22.45
3 3 24.50 21.13 212.27 23.48 24.50 22.25 25.09 23.37
t i
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s in
h
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ma-
ns
3@32 ~ i 121/2!216i 6218i 428122i 126i 726i 5

2~ f 2231 f 1!~216i 426i 1!# D2
t2

4
~ f 1f 222!

3~113i 513i 626i 1!G , ~57!

h f 1f 2

U 5te
f 1

1024S 1282128f 12384f 21t@~288i 12144! f 2
2

22081416i 1132i 21~272232i 22544i 1! f 1

1~232i 221472i 11736! f 21~2641128i 1! f 1
2

1~23361672i 1! f 1f 2#1t2 (
k1 ,k2

f 1
k1f 2

k2hU;k1 ;k2D ,

~58!

h f
MAW5t e

f ~ f 21!

16
$242~20i 121014 f 28 f i 1!t

1@~23i 5118i 1212i 423i 625! f 21~3i 5132i 1
2

28i 7115i 6288i 1142i 4123! f 226218i 6119i 7

112i 51106i 1280i 1
2230i 4#t2%. ~59!

The expressions for the three-loop termshU;k1 ;k2
in Eq. ~58!

are given in Appendix B. It has been pointed out in@5# that
for the exponenth12

G 52l (29)(1) ~see above! an exact esti-
mate equal to our first-order contribution may be found. I
indeed remarkable that all higher-order contributions toh12

G

appear to vanish in both approaches.
With these exponents we can describe the scaling be

ior of polymer stars and networks of two components, g
eralizing the relation for single-component networks@24#. In
the notation of Eq.~4! we find for the number of configura
tions of a networkG of F1 andF2 chains of species 1 and 2

ZG;~R/l !hG2F1h202F2h02,

with hG52dL1 (
f 11 f 2>1

Nf 1f 2
h f 1f 2

, ~60!

where L is the number of loops andNf 1f 2
the number of

vertices with f 1 and f 2 arms of species 1 and 2 in the ne
s

v-
-

work G. To receive an appropriate scaling law we assume
network to be built of chains that for both species will ha
a coil radiusR when isolated.

For the sake of completeness we give also the result
the « and pseudo-« expansions for the correlation lengt
critical exponent n51/(21h202hf) and the pair-
correlation function critical exponenthf in the nontrivial
fixed point:

hf~«!5
«2

64
1

17«3

1024
, ~61!

n~«!5
1

2
1

1

16
«1

15

512
«21S 135

8192
2

33z~3!

1024 D «3, ~62!

hf~t!5
2~42d!

128
t~16t i 2212t2i 2224t2i 818t2i 2

2

188t2i 1i 2!, ~63!

n~t!5
1

2
1

42d

16
t2

42d

512
~4240i 118i 214d!t2

2
42d

512 S 6112i 2110i 1184i 4163i 513i 6133i 7

212i 82220i 1
214i 2

2124i 1i 22d110i 1d

22i 2d2
d2

2 D t3. ~64!

VI. RESUMMATION

As is well known, the perturbation series expansions
renormalized field theory are nonconvergent, but gener
assumed to be asymptotic. For the exponentsh f 1f 2

this be-
havior is indicated in the corresponding columns of Table
and II, where the series are summed without further analy

The increase in the coefficients of the high-order terms
perturbation theory series may be estimated using infor
tion such as the combinatorial growth of the contributio
with order. The series for theb function of theO(m) sym-
metric f4 model with one couplingg has the asymptotic
behavior@60,61#

b~g!5(
k

Akg
k, ~65!
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TABLE II. Values of the copolymer star exponenth f 1f 2
obtained in the first, second, and third order

the unsymmetrical (U) fixed point in the« expansion and pseudo-« (t) expansion for different values o
f 1 , f 2 at «51 (d53). R stands for the results obtained by Pade´-Borel resummation of the three-loop serie

f 1 f 2 ;« ;«2 ;«3 R ;t ;t2 ;t3 R

1 1 20.38 20.50 20.28 20.43 20.38 20.46 20.43 20.44
1 2 20.75 20.85 20.69 20.80 20.75 20.82 20.78 20.80
1 3 21.13 21.07 21.33 21.11 21.13 21.09 21.11 21.10
2 1 21.00 20.98 20.71 21.00 21.00 20.99 20.98 20.99
2 2 21.75 21.37 22.37 21.62 21.75 21.50 21.71 21.60
2 3 22.50 21.47 24.99 22.19 22.50 21.82 22.56 22.13
3 1 21.88 21.28 21.70 21.50 21.88 21.48 21.82 21.64
3 2 23.00 21.36 26.19 22.47 23.00 21.91 23.18 22.43
3 3 24.13 21.02 212.83 23.26 24.13 22.06 24.97 23.14
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Ak5ckb0~2a!kk! @11O~1/k!#, k→`. ~66!

The quantitiesa,b0 ,c were calculated in@60,62#. A similar
behavior is found for the critical exponents expressed a
series in powers of the coupling. The same results also a
to the divergence of the« and pseudo-« expansions derived
above. The property~66! indicates the Borel summability o
the seriesb(g) @63#. The Borel resummation procedure tak
into account the asymptotic behavior of the coefficients a
maps the asymptotic series to a convergent series with
same asymptotic limit. The functionbaa ~30! coincides with
the O(m) symmetricb function ~65! in the polymer limit
m50. So its asymptotic behavior is known. The asympto
behavior of the off-diagonalb function b12 was found by
instanton analysis~see@64,65#! in @30#.

Let us introduce the techniques for resummation, us
the known asymptotic behavior of the series. Here we ap
the Pade´-Borel resummation@50# and a resummation refine
by a conformal mapping@66#. The first way of resummation
is applicable only for alternating series, while the second
is more universal. The resummation procedures are as
lows @50,51,63,66#. For an asymptotic series

f ~«!5(
j

f ~ j !« j , ~67!

one defines the Borel-Leroy transformf B(«) of the series by

f B~«!5(
j

f ~ j !« j

G~ j 1b11!
, ~68!

with the Euler Gamma function (b is a fit parameter!. Then
the initial series may be regained from

f res~«!5E
0

`

dt tbe2t f B~«t !. ~69!

Substituting forf B(«) its analytic continuation in the form o
a Pade´ approximant and evaluating Eq.~69! for the truncated
series, this procedure constitutes the Pade´-Borel resumma-
tion @50,63#. The conformal mapping technique in additio
uses the constanta in Eq. ~66!. Assuming that the behavio
~66! holds also for the expansion off («) in «, one concludes
that the singularity of the transformed seriesf B(«) closest to
a
ly

d
he

c

g
ly

e
l-

the origin is located at the point (21/a). Conformally map-
ping the« plane onto a disk of radius 1 while leaving th
origin invariant,

w5
~11a«!1/221

~11a«!1/211
, «5

4

a

w

~12w!2
,

substituting this intof B(«), and expanding inw, we receive
a series defined on the disk with radius 1 on thew plane.
This series is then resubstituted into Eq.~69!. In order to
weaken a possible singularity in thew plane the correspond
ing expression is multiplied by (12w)a introducing an ad-
ditional parametera @66#. In the resummation procedure th
value of a is taken from the known high-order behavior
the«-expansion series, whilea is chosen in our calculation
as a fit parameter defined by the condition of minimal diffe
ence between resummed second-order and third-order
sults. The resummation procedure was seen to be quite
sensitive to the parameterb introduced in the Borel-Leroy
transformation~68! @51#.

For the resummation of the exponentsh f 1f 2
we take into

account the combinatorial factors that multiply each con
bution according to the numbers of chainsf 1 and f 2. We
include an additional factor (f 11 f 2)k for the kth-order con-
tributions, multiplying the constanta by f 11 f 2. For resum-
mation of the series at the fixed pointsS, G, and U, the
following values ofa5aS,aG,aU are used@60,30#:

aS5aG53/8, aU527/64. ~70!

By analogy we use the same procedures developed for t«
expansion also for thet expansion, which we assume to ha
the same asymptotic behavior as it is in the same way
lecting contributions of the same loop order.

Let us note here that the conventional resummation of
b functions in the massive approach leads to a severe in
sistency, which is the reason for us to take the pseudo-«- or
t-expansion method. The distinct feature of thebab func-
tions introduced here is that they are functions of differe
numbers of variables, which leads to ambiguities in th
analytical continuation via Pade´ approximants or rational ap
proximants of several variables~see@67#!. Let us illustrate
this for the example of the two-loop approximation. The co
responding expressions read
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TABLE III. Values of the copolymer star exponenth f 1f 2

G at d53 obtained by the« expansion («) and the fixed-dimension techniqu
(3d).

\f 1 1 2 3 4 5 6
f 2 « 3d « 3d « 3d « 3d « 3d « 3d

1 20.56 20.58 21.00 21.00 21.33 21.35 21.63 21.69 21.88 21.98 22.10 22.24
2 21.77 21.81 22.45 22.53 23.01 23.17 23.51 23.75 23.95 24.28
3 23.38 23.57 24.21 24.50 24.94 25.36 25.62 26.15
4 25.27 25.71 26.24 26.84 27.12 27.90
5 27.42 28.24 28.50 29.54
6 29.78 211.07
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bvaa
52~42d!vaaf vaa

~vaa!, a51,2 ~71!

bv12
52~42d!v12f v12

~v11,v22,v12!, ~72!

with obvious expressions forf v11
, f v22

, f v12
. In order to obtain

the analytical continuation of the Borel transformed fun
tions of one variablef vaa

(vaa) ~71! one can make use of th

@1/1# Padéapproximant. Solving the corresponding nonli
ear equations numerically, we find for the nontrivial fixe
point S, v115v2251.1857@68#. In order to apply a similar
resummation technique to the functionf v12

(v11,v22,v12)
~72! one can make use of a generalization of Pade´ approxi-
mants to the case of several variables, i.e., represent
Borel transformf v12

B of f v12
in the form of a rational approx

imant f P of three variables@67#

f v12

P ~v11t,v22t,v12t !

5
11a1~v11,v22,v12!t1a2~v11,v22,v12!t

2

11b~v11,v22,v12!t
.

~73!

In spite of the fact that the rational approximant~73! pre-
serves the projection properties of the initial series~72!, i.e.,
setting any pair of variables$v11,v22,v12% equal to zero in
Eq. ~73! one gets the appropriate@1/1# Padéapproximant for
the remaining variable, the ‘‘global’’ symmetry is not pre
served. Due to different analytical continuations for t
Borel transforms of the series~71! on the one hand and th
series~72! on the other, solving the fixed-point equation f
the resummed function
-

he

f v12

res50, ~74!

we will never obtain a symmetrical solutionv11* 5v22* 5v12*
Þ0. For the fixed pointS we substitutev115v2251.1857
while solving Eq.~74! we obtainv1250.9571@70#. The rea-
son is that substitutingnumericalvalues of fixed-point coor-
dinatesv11,v22 into Eq. ~74! we lose information about the
contributions to the fixed-point value from different orders
the perturbation theory series. So it appears quite natura
restore this information by generalizing the pseudo-« expan-
sion@59# to the case of several couplings as described in S
IV.

VII. NUMERICAL RESULTS

In the following we present our numerical results for t
exponentsh f 1f 2

G , h f 1f 2

U , and h f
MAW . The exponent in the

symmetrical fixed pointS is included due to the relation
h f 1f 2

S 5h f 11 f 2,0
U @71#. Numerical results for the exponen

g f215n(h f 0
U 2 f h20

U ) may be found in the« expansion in
@32# and in the pseudo-« expansion in@72#.

A. d53

Let us first consider the cased53. Tables I and II show
some of the resummed results for the« andt expansions in
comparison with the naive resummation of the series. Wh
the nonresummed results differ to a great extent for the
approaches at highf 1 , f 2, resummation shows that the tw
schemes yield consistent numerical estimates. Tables II
list our final results using the resummation procedure refi
by the conformal mapping technique as described in Sec.
e
TABLE IV. Values of the copolymer star exponenth f 1f 2

U at d53 obtained by the« expansion («) and the fixed-dimension techniqu
(3d).

\f 1 1 2 3 4 5 6
f 2 « 3d « 3d « 3d « 3d « 3d « 3d

0 0 0 20.28 20.28 20.75 20.76 21.36 21.38 22.07 22.14 22.88 23.01
1 20.43 20.45 20.98 20.98 21.64 21.67 22.39 22.47 23.21 23.38 24.11 24.40
2 20.79 20.81 21.58 21.60 22.44 22.52 23.33 23.50 24.28 24.57 25.29 25.73
3 21.09 21.09 22.13 22.19 23.16 23.30 24.20 24.48 25.28 25.71 26.41 27.03
4 21.35 21.37 22.61 22.71 23.82 24.04 25.02 25.40 26.24 26.81 27.48 28.28
5 21.60 21.64 23.05 23.21 24.44 24.75 25.80 26.30 27.15 27.89 28.51 29.50
6 21.81 21.89 23.46 23.68 25.01 25.42 26.53 27.15 28.02 28.92 29.50 210.69
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Comparing the numerical values listed in the abo
tables, it is convincing that the two approaches and the
ferent resummation procedures all lead to results that
within a bandwidth of consistency, which is broadening
larger values of number of chainsf 1 , f 2.1. This is not sur-
prising as we have seen in Sec. V that our expansion par
eters are multiplied byf 1 and f 2. Rather it is remarkable tha
even for a total number of chains of the order of 10~see
Tables III and IV! we still obtain results that are comparab
to each other.

It seems noteworthy that at least for low numbers
chains (f 11 f 2;4) the nonresummedt expansion seems t
give results that do not differ essentially from the resumm
values. Also the nonrefined Pade´-Borel results of thet ex-
pansion are closer to the refined summation of the« expan-
sion.

Does the data answer the question of convexity of
spectrum? A close study of the matrix of values reveals,
for fixed f 1 both h f 1f 2

G andh f 1f 2

U are convex from above a

functions of f 2, thus yielding ‘‘multifractal~MF! statistics.’’
The relation to a MF spectral function forf 151,2 has been
pointed out in@5#; it is analyzed in close detail in view of th
present data and field theoretic formulation elsewhere@38#.
On the other hand, also copolymer stars should repel e
other. This is found to be true as well; the correspond
convexity from below shows up, e.g., along the diago
values h f f as a function of f . The general relation
h f 1f 2

1h f
18 f

28
>h f 11 f

18 , f 21 f
28

is always fulfilled. Thus, even

though simple power- (k) of-field operatorsfk do not de-
scribe MF moments@1#, they may be written as a powe
(L1k) of-field operators of suitable symmetry that have t

TABLE V. Values of h f
MAW exponents of star of mutually

avoiding walks atd53 and 2 obtained by the« expansion («) and
the fixed-dimension technique (3d,2d). The last column gives the
exact conjecture atd52 @11,12#.

d53 d52
f « 3d « 2d exact

1 0 0 0 0 2.250
2 2.56 2.56 21.20 21.19 21.250
3 21.38 21.36 22.71 22.60 22.916~6!

4 22.36 22.34 24.36 24.07 25.250
5 23.43 23.43 26.04 25.61 28.250
6 24.58 24.64 27.78 27.17 211.916~6!
e
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appropriate short-distance behavior. This is also illustrate
the next subsection by Fig. 5, showing the spectrum of
ponentsh f 1f 2

G in the 2D limit. The opposite convexity alon

the diagonal as opposed to each of the two axes is cle
seen for these combinations of two random-walk stars
mutually interact.

B. d52

While two-dimensional star polymers up to now have n
found an experimental realization, their study is of some t
oretical interest. It has been shown that the scaling dim
sions of two-dimensional uniform polymer stars belong to
limiting case of the so-called conformal Kac table@73–75#.
They have been calculated exactly by Coulomb gas te
niques@17,35#. An exact relation has also been proposed
stars of mutually avoiding walks@11,12#. But it is still an
open question if exact results for the copolymer star sys
may be derived in this formalism. Our numerical results
the exponentsh f 1f 2

G , h f 1f 2

U , and h f 1f 2

MAW are presented in

Tables VI, VII, and V, respectively.
Exact results for exponents of two-dimensional syste

that are described by a conformal field theory with cent
chargec,1 may be taken from the Kac table of scalin
dimensions@73–75#

hp,q~m!5
@~m11!p2mq#221

4m~m11!
, ~75!

wherep,q are integers in the minimal block

FIG. 5. Exponenth f 1f 2

G in the ‘‘Gaussian’’ fixed point atd52
obtained in the« expansion and in the fixedd scheme. Steps on th
‘‘flying carpet’’ correspond to the difference of the results of th
two renormalization-group approaches. The diagonal line shows
valuesh f f

G .
e
TABLE VI. Values of the copolymer star exponenth f 1f 2

G at d52 obtained by the« expansion («) and the fixed-dimension techniqu
(2d).

\f 1 1 2 3 4 5 6
f 2 « 3d « 3d « 3d « 3d « 3d « 3d

1 21.20 21.22 21.98 21.98 22.56 22.58 22.99 23.04 23.36 23.43 23.68 23.78
2 23.41 23.45 24.49 24.59 25.37 25.52 26.13 26.34 26.80 27.04
3 26.05 26.23 27.36 27.63 28.49 28.84 29.50 29.91
4 29.06 29.44 210.55 211.03 211.89 212.45
5 212.38 212.98 214.03 214.74
6 215.99 216.81
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TABLE VII. Values of the copolymer star exponenth f 1f 2

U at d52 obtained by the« expansion («) and the fixed-dimension techniqu
(2d).

\f 1 1 2 3 4 5 6
f 2 « 3d « 3d « 3d « 3d « 3d « 3d

0 0 0 20.59 20.62 21.51 21.53 22.61 22.63 23.84 23.89 25.18 25.28
1 20.91 20.96 21.94 21.96 23.11 23.13 24.35 24.41 25.71 25.83 27.17 27.35
2 21.62 21.63 23.05 23.09 24.49 24.54 25.94 26.06 27.46 27.64 29.04 29.30
3 22.16 22.16 24.00 24.04 25.70 25.80 27.39 27.57 29.09 29.35 210.82 211.17
4 22.60 22.64 24.80 24.88 26.79 26.96 28.72 28.97 210.61 210.95 212.52 212.95
5 23.00 23.03 25.52 25.63 27.81 28.01 29.96 210.27 212.06 212.47 214.14 214.65
6 23.34 23.39 26.17 26.33 28.73 28.99 211.12 211.49 213.43 213.91 215.69 216.27
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1<p<m21, 1<q<p, ~76!

andm is connected with the central chargec by

c5126/m~m11!, m>3. ~77!

The exact result for the star exponents of uniform stars
two dimensions is obtained in the sublimiting case ofm52
~which meansc50) for half integer values ofp @17,35#,

xf52hf /2,05~9 f 224!/48. ~78!

The scaling dimensionxf is related to the exponenth f by

xf5
1

2
f ~d221h!2h f . ~79!

For the exponents of the star of MAW the following resu
was conjectured ford52 @11,12,14#:

h f
MAW5xf

MAW52h0,f5
124 f 2

12
. ~80!

These values are shown in the last column of Table V. P
ting the resummed data forh f

MAW from Table V with respect
to f 2, one finds good agreement with the conjectured slop
21/3.

The qualitative behavior of the exponenth f 1f 2

G in the

Gaussian fixed point is shown in Fig. 5. The steps in
‘‘flying carpet’’ correspond to the difference of the results
the two RG approaches. Note that the curvature of the
face along the diagonal in thef 1-f 2 plane has opposite sig
to that along each of the axes. From this curvature it is
vious that the dependence of the exponent onf 1 , f 2 may not
be described by a simple second-order polynomial. The
fit we could find to our resummed data using a simple f
mula that reproduces the vanishing result forf 11 f 253
found in the« expansion reads

h f 1f 2

G,app52 f 1f 2@a1b/~ f 11 f 2!#, a51/4, b53~12a!.

~81!

Note that the right-hand side of Eq.~81! vanishes iff 1 or f 2
is zero according to our perturbative results. This might b
defect of the perturbation theory as a finite result may
expected ind52 as in Eqs.~78! and~80! evaluated forf 50.
n
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of

e
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-
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a
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In two dimensions however, each chain of a star will i
teract only with its direct neighbors. A star described here
h f f

G will behave like a MAW 2f star if each species-1 chai
has two neighbors of species 2, whereas it will behave
ferently if the chains are ordered such that each species
one bulk of chains. The 2D copolymer stars in this sen
reveal an even richer behavior. Thus the copolymer gene
zation of the MAW star adds another problem, for which
rigorous formulation in terms of an exactly solvable 2
model is yet to be found.

VIII. CONCLUSIONS AND OUTLOOK

Several reasons motivated our study. First, we intende
reveal the scaling behavior of copolymer stars and netwo
in solutions generalizing former studies of homogeneo
polymer networks. This included revisiting the theory of te
nary polymer solutions and adding an independent appro
to the calculations. Second, the description of multifrac
spectra in terms of random walks@5# promised to prove the
relation of field theory and multifractals for this case.
particular we intended to check the convexity properties
pected for the spectrum of exponents. A third motivati
arose from the known peculiarities of polymers and polym
stars in two dimensions. Apart from numerically verifyin
previous results on polymer and mutually avoiding wa
stars, we pose the question of finding an exactly solva
~conformal! two-dimensional theory for general copolym
stars.

We have extensively studied the spectrum of expone
governing the scaling properties of stars of walks taking i
account the self- and mutual interactions of a system of s
cies of polymers. Our study was performed in the framew
of field-theoretical RG theory using two complementary a
proaches: the renormalization at zero mass in conjunc
with the « expansion and massive renormalization at fix
dimension with numerical evaluation of loop integrals. W
have formulated the problem of finding the scaling exp
nents of stars of interacting and noninteracting walks
terms of the determination of the scaling dimensions of co
posite field operators of Lagrangian field theory. On the o
hand, this allows for the application of well-developed fo
malisms and methods for analyzing the scaling propert
On the other hand, this defines these families of expone
extending previous sets in the framework of Lagrangian fi
theory. Our results agree with the previous studies of spe
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FIG. 6. Graphs of functionsG (2), G (4) in the three-loop approximation. Graphs 13 and 14 represent additional contributions
function G (* f ). In graphs 13 and 14 thef vertex is indicated by a box.
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cases that were in part done only to second order of th«
expansion. We have here considered the general case
star of two mutually avoiding sets of walks, the walks
each set either self-interacting or not. Also we have stud
the case of a star of mutually interacting walks. All calcu
tions were performed to third order of perturbation theo
The sets of exponents are given in the« expansion@formulas
~54!–~56!# and in terms of the pseudo-« expansion@formulas
~57!–~59!#. The latter has proved to be a most suitable too
evaluate this massive theory containing serveral couplin
We have shown that the conventional way of direct solut
even of the resummed expressions for the fixed points of
theory would lead to severe problems in this case. We h
evaluated the series obtained in both approaches for s
dimensionsd52 and 3. Numerical values are produced
careful resummation of the asymptotic series using the
sults of an instanton analysis of the three-coupling prob
@30#. For comparison we have also given the results of na
summation as well as standard Pade´-Borel resummation for
selected cases.

We have found remarkable consistency and stability
the results ind52 and 3 with expected growth of deviation
for a large number of arms of one star. The same meth
were applied previously to the problem of uniform star po
mers and have led to results@32,72# in good agreement with
Monte Carlo~MC! simulations@36,37#. We hope our presen
calculations might also stimulate MC studies of the copo
mer star problem.

The study we performed for two dimensions might ha
no direct application to the physics of real polymers, bu
could perhaps give some insight to the problem of mapp
our theory to a two-dimensional conformal field theory. T
resummed values of the exponents for stars of mutu
avoiding walks are in fair agreement with an exact res
previously conjectured@11,12#. The exponents for the cas
of stars of two mutually avoiding sets of walks, on the oth
hand, show a dependence on the numbers of walks that
not be described by a second-order polynomial as der
from the general Kac formula@73–75#. This may be seen
already qualitatively from the fact that the curvature of t
f a
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function h f 1f 2
~see Fig. 5! of the two variablesf 1 , f 2 along

each of the axes in thef 1-f 2 plane has the opposite sign t
the curvature along the diagonalf 15 f 2.

It is this fact that shows that the series of exponentsh f 1f 2

is a good candidate for finding its application in the theory
MF spectra@76#. The MF spectrum describing the momen
of a fractal probability measure fulfills exact conditions
convexity. Deriving such a MF spectrum, however, from t
scaling dimensions of a series of composite field operator
only possible if the scaling dimensions show the appropr
convexity@1#. This in fact is given for our case and the seri
of exponents may be related to the MF spectrum gener
by harmonic diffusion near an absorbing fractal@5#. This
also allows for a field-theoretic test of results for the sho
distance correlations on multifractals@10#. This relation and
the calculation of the MF spectrum on the basis of the res
presented here are subjects of a separate work@38#.
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APPENDIX A: LOOP INTEGRALS—GRAPHS,
« EXPANSION, AND NUMERICAL VALUES

This appendix is devoted to the contributions to pertur
tion theory, their representation in terms of Feynman gra
and their corresponding loop integrals, and the evaluation
these integrals for the two RG approaches. Figure 6 sh
the Feynman graphs up to third loop order representing
contributions to the functionsG (2) and G (4) ~we keep the
labeling of @56#!.

Each contribution toG (* f ) contains the composite opera
tor ) i 51

f fai
only once. The relevant graphs can be obtain
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from the usual four-point graphs 22u22122u4 by consid-
ering each vertex in turn to describe the composite opera
In the three-loop approximation we consider here two m
graphs contribute that cannot be produced in this man
They are labeled 13 and 14. In Table VIII we show t
correspondence between the numerical values of the
integrals and appropriate Feynman graphs.

A diagram withL loops is to be multiplied bysd
L with

sd5
1

2d21~p!d/2G~d/2!
,

but this factor can be absorbed by redefinition of the c
pling constantsgab→gab /sd . In the massless renormaliza
tion scheme loop integrals corresponding to these graphs
evaluated by the« expansion at zero mass and nonzero
ternal momenta chosen at the so-called symmetry point.
expressions read@39#

D2
«5

1

«S 11
«

2
1

«2

2 D , I 1
«5

1

2«2S 11
3«

2
1

5«2

2
2

J«2

2 D ,

I 2
«52

1

8«S 11
5«

4 D , I 3
«52

1

24«2S 11
15«

4 D ,

I 4
«5

1

6«3S 113«1
31«2

4
2

3J«2

2 D ,

I 5
«5

1

3«3S 11
5«

2
1

23«2

4
2

3J«2

2 D ,

TABLE VIII. Values of the loop integrals. The graphs 2-m1 –5-
s3 indicate the derivative of the two-point function]/]k2G (2)(k).

Integral Integral Integral
Graph value Graph value Graph value

2-u2 D2 8-u4 I 4 14 I 1D2

3-u3 D2
2 9-u4 I 5 2-m1 0

4-u3 I 1 10-u I6 3-s2 I 2

5-u4 D2
3 11-u4 I 5 4-m3 0

6-u4 I 1D2 12-u4 I 7 5-s3 I 8

7-u4 I 3 13 D2
3

or.
re
er.
e
op

u-

are
x-
he

I 6
«5

1

3«3S 112«1
13«2

4 D ,

I 7
«5

z~3!

2«
, I 8

«52
1

6«2
~112«!. ~A1!

Here the values of derivatives]/]k2 of the function
G (2)(k) are given at the pointk251. In the massive renor-
malization scheme loop integrals are calculated at non-z
mass and zero external momenta@to distinguish from Eq.
~A1! we will label them bym#. The mass renormalization
introduces a higher-order correction to the propagator, wh
has to be taken into account in our calculation only in t
first-order term@see Eqs.~16! and ~17!#

D2
a1a25D21

1

9
I 2D21~ua1a1

2 1ua2a2

2 !.

HereD215(42d)/4. This value has been substituted into th
results for theb functions and fixed points.D21 does not
enter expressions that are independent of the RG sche
such as the resulting exponents. The integrals can be eith«
expanded@see formulas~42! from this article for instance# or
numerically calculated at arbitrary space dimensions@56,57#.
In particular, for dimensionsd52 and 3 they are given in
Table IX with the normalization

i 15I 1
m/~D2

m!2, i 25I 2
m/~D2

m!2, i j5I j
m/~D2

m!3,

j 53, . . . ,8.

Note that in the massive scheme the values of the deriva
]/]k2 of the functionG (2)(k) are given atk250.

APPENDIX B: THREE LOOP-CONTRIBUTIONS

In this appendix we have collected the more lengthy e
pressions for the three loop contributions to RG functio
and exponents. The coefficientsbjkl ( j 1k1 l 53) for thet
expansion of the functionbv12

m ~37! read

b3005b03052
i 2d

18
2

2i 3

9
2

16i 4

9
2

i 6

3
2

4i 8

9

1
58i 1

27
1

2i 2

3
2

20

27
,

y

92

1

TABLE IX. Numerical values of normalized loop integralsi j calculated in the massive field-theor
framework@56,57#.

d i1 i 2 i 3 i 4

2 0.781302412896 -0.114635746230 -0.044703881514 0.5698294391
3 0.6666666667 -0.0740740741 -0.0376820725 0.3835760966

d i5 i 6 i 7 i 8

2 0.659043562065 0.650899895132 0.40068563 -0.15739840977
3 0.5194312413 0.5000000000 0.1739006107 -0.0946514319
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b00352
8i 4

9
2

2i 6

9
2

2i 7

9
2

14

27
1

34i 1

27
,

b2105b12050,

b1025b01252
20i 4

9
2

4i 7

9
2

2i 6

9
2

26

27
1

70i 1

27
,

b2015b02152
2i 3

9
2

16i 4

9
2

2i 7

3
2

i 2d

18
2

28

27
1

20i 1

9
1

2i 2

27
,

b11152
16

27
2

2i 6

9
2

8i 4

9
1

4i 1

3
.

The coefficientshU;k1 ;k2
introduced for thet expansion of

the exponenth f 1f 2

U in the unsymmetric fixed pointU ~58!

read

hU;0;0532821480i 12128i 22240i 42492i 51132i 62356i 7

248i 812288i 1
2116i 2

21384i 1i 2 ,

hU;0;1527680i 1
22496i 1i 215708i 11184i 211326i 7

11620i 52588i 61204i 4216i 2
2148i 821312,

hU;0;255701810i 411488i 1
2224i 2148i 1i 222154i 1
2270i 71216i 62216i 5 ,

hU;0;352542162i 41162i 1 ,

hU;1;05216i 2
21468i 72448i 1i 21160i 212408i 12252i 6

22992i 1
21564i 5148i 82560,

hU;1;1525342i 11176i 1i 2288i 21756i 62594i 72252i 5

13536i 1
211638i 411346,

hU;1;251188i 12216i 52216i 62756i 42324,

hU;2;0521072i 1232i 2164i 1i 21336i 42112i 71144i 6

1704i 1
2248i 51272,

hU;2;151098i 12180i 62738i 42180i 52306,

hU;3;052401144i 1224i 6296i 4224i 5 .
l-

x-

em.
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