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We explore and calculate the rich scaling behavior of copolymer networks in solution by renormalization-
group methods. We establish a field-theoretic description in terms of composite operators. Our third-order
resummation of the spectrum of scaling dimensions brings about remarkable features: The special convexity
properties of the spectra allow for a multifractal interpretation while preserving stability of the theory. This
behavior could not be found for power-of-field operators of uspfafield theory. The two-dimension&2D)
limit of the mutually avoiding walk star apparently corresponds to results of a conformal Kac series. Such a
classification seems not possible for the 2D limit of other copolymer stars. We furthermore provide a consis-
tency check of two complementary renormalization schem&xpansion and renormalization at fixed dimen-
sion, calculating a large collection of independent exponents in both approf8thé863-651X97)08911-3

PACS numbe(s): 64.60.Ak, 61.41+e, 64.60.Fr, 11.10.Gh

I. INTRODUCTION scaling properties have been extensively studied by
renormalization-group methodfor a review sed24]). Star

Recently, there has been considerable interest in the relg@olymers as the most simple polymer networks may be pro-
tion of field theory and multifractalgl —4] and the associated duced by linking together the end points of polymer chains at
multifractal dimension spectrg5—10] as well as noninter- SOme core moleculéFig. 1).
secting random walks and their two-dimensiof@D) con- Networks of any given topology may be generated in the
formal theory[11-15. We present a model of multicompo- Same way(Fig. 2. Randomly linked polymer networks are
nent polymer networks that shows a common core of thes@lso obtained as a result of a vulcanization process by ran-
topics and allows for a detailed study of the interrelations domly linking nearby monomers of different chains to each
While a multifractal spectrum may be derived from the scal-other. . .
ing exponents of two mutually avoiding stars of random The asymptotic properties of homogeneous systems of
walks [1,5], a description in terms of power-of-field opera- linear chain molecules in solution are universal in the limit
tors seems to be ruled out by stability consideratiphls of long chains. Let us give a short account of the standard
Here we show that already a simple product of two poweri€xtbook result§18,25-28. For each system one finds a
of-field operators complies with both somewhat contrary re-So-called® temperature at which the two point attractive and
quirements. We start from the theory of polymer stars, starfepulsive interactions between the different monomers com-
like arrangements of polymer chains with self- and mutualPensate for each other. As a result, the polymer chains may
excluded interactionkl6,17. We generalize this concept to Pe described by random walKsp to higher-order correc-
stars of chains of different polymer species that may differ in
their self- and mutual interactions. Our formalism describes

homogeneous polymer stars, stars of mutually avoiding Tf .

walks, and the situation of two mutually interacting stars. T1 ri1
Polymers and polymer solutions are among the most in- .. e

tensively studied objects in condensed matter phy[si€s f f_l

The behavior of multicomponent solutions containing poly- 1.

mers of different species is especially rich. Systems of
chemically linked polymer chains of different species such
as block copolymers are also of considerable experimental

and technical interest. Linking polymer chains of different or / . ]

even contrary properties, such as hydrophile and hydrophobe . 3. S
chains, one obtains systems with qualitatively different be- T2 r;
havior. Here we concentrate on systems of chains in a sol-

vent that, in a given temperature range, differ in their respec- , s

tive steric interaction properties. We generalize the theory of

multicomponent polymer solutiond9-23 to solutions of

copolymer networks, i.e., chains of different species linked

at their end points in the form of stars or networks of any

topology (see Figs.1-8 FIG. 1. Star polymer of arms linked together at poimt, with
For solutions of polymer networks of a single species theextremities placed at points, . .. f;.
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FIG. 2. Polymer networlg. It is characterized by the numbers

n of f-leg vertices. Hera, =3, n;=2, n,=1, andng=1. FIG. 3. (a) Block copolymer consisting of two polymer chains

of different speciegshown by solid and thin lingdinked at their
d points.(b) Copolymer star consisting df, arms of species

. . ., €
tions): The mean-square distance between the chains eng{:dfb arms of specieb tied together at their end points.

points (R?) scales with the number of monomeks like
(R?)~N. Above the® temperature the effective interaction . ) )
between the monomers is repulsive resulting in a swelling of "€ second part shows scaling with the ske N” of the

the polymer coil that is universal fo¥— : isolated coil ofN monomers on some scafg omitting the
fugacity factor. The exponentg ,n;, f=1,2,3 ..., consti-
<R2)~N2V, (1) tute families of “star exponents,” which depend on the num-

ber of armsf in a nontrivial way. The case of linear polymer
where the correlation length exponent 0.588, 3/4 in space chains is included in this family with the exponent
dimensionsd=3,2. The number of configurationg of a  y=vy,;= ", defined in Eq(2). For general numbers of arrfis

polymer chain ofN monomers grows foN—« like the star exponenty;,n; have no physical counterparts in
the set of exponents describing magnetic phase transitions.
Z~erNNTTE, (2)  Nevertheless, they can be related to the scaling dimensions

of composite operators of traceless symmetry in the polymer
with a nonuniversal fugacitg” and a universal exponent |imit m—O0 of theO(m) symmetricm-vector mode[32,33.
y=1.160, 43/32 ford=3,2. In the early 1970s, following The exponentsy; have been calculated analytically in per-
the work of de Gennef29], the scaling theory of polymers turbation theonf16,17,32—34 by exact methods in two di-
was elaborated in detail using the analogy between thenensiong17,35, and by Monte Carlo simulatiori$6,37.
asymptotic properties of long polymer chains and the long- It has been shown that the scaling properties of polymer
distance correlations of a magnetic system in the vicinity ofnetworks of arbitrary but fixed topology are uniquely defined
the second-order phase transitiee[18,26). This map- by its constituting star$24], as long as the statistical en-
ping allows one to receive the above-defined exponents semble respects some conditions on the chain length distri-
andy as limits of the correlation length exponentand the  bution[32]. Thus the knowledge of the set of star exponents
magnetic susceptibility critical exponemptof theO(m) sym-  ; or #; allows one to obtain the power laws corresponding
metric m-vector model in the formal limitm—0 [29]. to Eq. (3) also for any polymer network of arbitrary topol-
On the other hand, if polymers of different species arengy. The partition functiornZ, of a polymer networlg (see
present in the same solution, the scaling behavior of the obrig. 2) of F chains each oN monomers scales witN—
servables may be much more rich. Let us consider a solutiogccording to[17]
of two different species of polymers in some solvent, a so-
called ternary solution. Depending on the temperature, the
system may then behave as if one or more of the inter- and
intrachain interactions vanish in the sense described above
[19-23. This will lead to asymptotic scaling laws that may
differ from those observed for each species alB3.
Interesting systems are obtained when linking togethewhere n; is the number of vertices withf legs and
polymers of different species. The most simple system ot =1+ZX(f/2—1)n; is the number of loops in the netwogk
this kind is a so-called block copolymer consisting of two In this article we address a somewhat more complex prob-
parts of different species. They are of some technical imporlem: What happens to the scaling laws if we build a polymer
tance, e.g., serving as surfactaf®d]. For our study they star or general network of chains of different species? In
give the most simple example of a polymer star consisting ofiew of the above-introduced ternary solutions, we thus
chains of two different specig¢&ig. 3a)], which we will call ~ study systems of polymer networks in which some of the
here a copolymer star. For the homogeneous polymer star thetra- and interchain interactions may vanish. For instance,
asymptotic properties are uniquely determined by the numthere may beonly mutualexcluded-volume interactions be-
ber of its constituting chains and the dimension of space. Faiween chains of two different species in the copolymer star
the number of configuration§partition function Z; of a  shown in Fig. 3, while chains of the same species may freely
polymer star off chains each consisting 6f monomers one intersect. Each subset of chains of one species thus consti-
finds[17,24] tutes a star of random walks avoiding the second star of
random walks. Cates and WittdB] have shown that this
Zi~e!NINYTL (R /)12, N—oo, (3)  problem of a star of random walks avoiding a given fractal

Zg~e*FNNYOG=F72)  with o= —dL+ >, neyy, (4)
f=1
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structure is the key to calculating the multifractal spectrumpolymer model to a renormalizable field theory making use

of absorption of diffusing particles on this fractal. This cal- of well-developed formalismésee[18,26] for example. To

culation can be performed explicitly for the diffusion near this end we introduce a continuous version of our model as

absorbing polymer§5,3§]. proposed by Edwardgi2,43, generalizing it to describe a
The setup of our article is as follows. In Sec. Il we intro- set off polymer chains of varying composition possibly tied

duce notation and relate the polymer model to a Lagrangiatogether at their end points. The configuration of one poly-

field theory. This field-theoretical formalism will be used mer is now given by a pati?(s) in d-dimensional spac&®

throughout the paper. In Sec. Il we define theparametrized by a surface variable6<S,. We now allow

renormalization-group procedures. We present two alternafor a symmetric matrix of excluded-volume interactiang,

tive approaches: zero mass renormalization together with aipetween chaing,b=1, ... f. The HamiltonianX is then

¢ expansior(see e.g.[39]) and massive renormalization at a given by

fixed dimension40]. Section IV is devoted to the study of

the renormalization-group flow of the ternary model and its

fixed points. Series for critical exponents governing the scal- 1 s, [dri(s)\2

ing behavior of copolymer stars and stars of mutually avoid- “—H(r¥) =, f ds(—)

ing walks are obtained in Sec. V. In Sec. VI we discuss the kT a=1 2ds

problem of resummation of the asymptotic series arising in

this context. Numerical results are presented in Sec. VII. We 1 [t

close with concluding remarks and an outlook on possible *5 > uabJ dr pa(f)pp(r), (7

applications of the theory in Sec. VIII and give some calcu- ab=1

lational details in Appendixes. We have announced some of

our main results in a Lettd@1].

0

with densitieSpa(r)=f§ads 84(r—r?(s)). In this formalism

the partition function is calculated as a functional integral
Il. MODEL AND NOTATIONS

Let us first take a look at the model we use to describe
polymers. In a first discrete version we describe a configura-

i iti 1
gc(;inngof the polymer by a set of positions of segment end Zf{sa}:f D[ra(s)]exp[ _ ﬁH(ra)]. ®)
. B

C{I’l, PP ,rN}ERdXN.

Its statistical weight(Boltzmann factor with the Hamil-  Here the symboD[r,(s)] includes normalization such that
tonian’H divided by the product of the Boltzmann constantz{S }=1 for all u,,=0. To make the exponential éffunc-
kg and temperatur@ will be given by tions in Eq.(8) and the functional integral well defined in the

bare theory a cutof, is introduced such that all simulta-
N neous integrals of any variablssands’ on the same chain
B 1 ) are cut off by|s—s’|>s,. Let us note here that the continu-
—ex;{ B 4_/2Jz (rj=rj-1) ous chain mode(7) may be understood as a limit of discrete
0 self-avoiding walks, when the length of each step is decreas-
N ing /o— 0 while the number of stegs, is increasing, keep-
-B/8 2 &Mri— fj)] : (5 ing the “Gaussian surface3,= N,/ 2 fixed. The continuous
=t chain model(8) can be mapped onto a corresponding field

1
eX —kB—TH

The first term describes the chain connectivity and the pa'gheory by a Laplace transform in the Gaussian surface vari-

rameter/y governs the mean-sqare segment length. The se@blessa_ to conjugate chemical potentigismass variables)
ond term describes the excluded-volume interaction forbida (301

ding two segment end points to take the same position in

space. The parametgrgives the strength of this interaction.

The third parameter in our model is the chain length or num- 3 _[” - S

ber of segmentdl. The partition functionZ is calculated as Ziltal fo l_b[ dSe 2HS,)- ©
an integral over all configurations of the polymer divided by

the system volumé), thus dividing out identical configura- N -
tions just translated in space: The Laplace-transformed partition functicfi{u,} can be

expressed as the=0 limit of the functional integral over
vector fields ¢,, a=1,...,f, with m components
¢, a=1,.. .. m

. (6)

10N 1
Z(N)= a |1;[1 driex;{— I(B_TH{r‘}

This will give us the “number of configurations” of the = _ _
polymer (2). We will do our investigations by mapping the Zf{“b}_f Dl ¢pa(r)]exd — L{¢p, o}] [m=0- (10)
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The Landau-Ginzburg-Wilson Lagrangiahof f interacting ~ where ¢p2=3="_,($%)2. The limit m=0 in Eq. (10) can be

fields ¢y, each withm components, reads understood as a selection rule for the diagrams contributing
to the perturbation theory expansions, which can be easily

_ gd [V 2 checked diagr_ammatically. A formal prpof of E(d.l) psing
Hbo ol = f r{’“a(ﬁa (Va1 the Stratonovich-Hubbard transformation to linearize terms

in Eq. (7) is given for the multicomponent case[iB0]. The
_particle i i ionE(1)(g; i
2 ™ a,J dr ¢§(r)¢§’(r) (11) one-particle irreducible vertex functions'~’(q;) of this

aa =1 theory are defined by

5(2 q.)r“ ,,,,, 2 (1) = f iidry- - dri(¢a (r1)-- - ¢a (1)) ipim—o- (12)

The averagé ) in Eq. (12) is understood with respect to the Lagrangiat) keeping only those contributions that correspond
to one-particle irreducible graphs and have nonvanishing tensor factors in thenkinit The partition functiorz, ({S,} of

a polymer star consisting dfpolymers of different species 1,. ,f constrained to have a common end point is obtained from
Eq. (8) by introducing an appropriate product 8ffunctions ensuring the “starlike” structure. It reads

1 o .
Z*f{Sa}:j D[ra]exp[ —mH(ra)]QZ 84(r,(0)—r1(0)). (13

The vertex part of its Laplace transformation may be defined by

5( p+2 Qi)r(*f)(pa(h, e va):J el (Pro*ainilgdr o, - -ddrf<¢>1(ro)~ < i(ro) da(ry) - '¢f(rf)>fpl,m20’ (14

where alla,, . . . ,as are distinct. The vertex functidi* " is  product of two power-of-field operators with appropriate
thus defined by insertion of the composite operaiqgp, . symmetry ()"1(¢’)"2, each corresponding to a product of
Its scaling properties are governed by the scaling dimensiofields of the same “species.” Nevertheless, our results are
of this operator. When only one species is present one cagasily generalized to the case of any number of polymer
also defind™* ' by insertion of a composite operator of trace- species.

less symmetry33]. In the following we will be mainly in- The starting point for our calculations are the three-loop
terested in the case of only two species of polymers, witrexpansions for the bare vertex functions of interest
interactionsu, ;,U,, between the polymers of the same spe-(d/dk?)I'®), T'® andI'™* . They involve the loop integrals
cies anduq,= U,; between the polymers of different species. D, andl;—1g. These are given in Appendix A together with
In this case the composite operator in Ety) reduces to the their corresponding graphs. The expressions read

1“(2) = 1| u + 4| 3 (15)
r?kz (aa) 9 2Yaa 27 aai
4 5 22 2 4 58 14 22
rgggaa)zuaa—gogauga+(§og+ 3|1)u§a—(§D§+ 571102+ oo lat g latoolst = let ool us., (16)

T D=14D32u, o /24 D3Us a,Uaa,/8+ Ua a,Uaa, 1+ Uaja, Uaya ) 1 (114 D) US o 124+ D30 0 Uaze, Uaca,/48
+D2Uga,Ua a;Uayacl 121 Uaia Ua a;Uaga,lat (157 16) Ua s Ua o Unya /24 Ua s Ua a;Uasa lat (Blat17)
X Ug a,UajasUayay/3+ Dol 1+ DI UL o Ugua 4+ (Dol +214+ 215+ 17)Ud o Ug o+ (13+ 314+ 15)
XUS o Uaja,+ (Dol 14214+ 15416+ D3) U o /24 Dol Uaia,Uaga, 12+ (14+15) Ug o Ua o, Uaya,

T T T 2
+(|4+|5+|7)ua1a1uala2ua1a3+ualalualazuazazl5/2+(D2|1+4|4+IG)ualalualaz' (17)
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In Eq. (17) summation overn;=1, ... f is assumed. Equa- what complementary approaches: zero mass renormalization
tions (15)—(17) apply to any number of polymer species. For (see[39] for instance with a successive expansion46]

a star off ; chains of species 1 arfg chains of species 2 we and the fixed-dimension massive RG approghlj. The first
restricta=1,2 in Eqgs.(15) and(16) and the matrix of inter- approach is performed directly for the critical point. Results

actionsu,y, is given by for critical exponents at physically interesting dimensions
d=2 and 3 are calculated in an=4—d expansiorj46—49.
U1, 1<a,bs<f, The second approach renormalizes off the critical limit but
ufe=! u,,, f,<ab<f calculates the critical equnents dire_ctly in space dimensions
ab d=2,3 [50,5]]. It also gives quantitative results for the

Ui, Otherwise. preasymptotic critical behavi§b2,53. Most authors tend to
prefer one method and to exclude the other for nonobvious
reasons. The application of both approaches will enable us in
PffD =D _—pr, (18) particular to check the consigtency of approximations and the

ab™ "a accuracy of the results obtained.

. , ) Let us formulate the relations for a renormalized theory in
For generaf,, f, the corresponding combinatorics may alsOerms of the corresponding renormalization conditions.
be dlrectlyi:alculated by summation ovaey=1,2 instead. Though they are different in principle for the two proce-
Replacing U a =Uaa, €ach term in the sum with indices dures, we may formulate them simultaneously using the
ai, ..., then acquires a factor same expressions. Note that the polymer limit of zero com-

ponent fields leads to essential simplification. Each figld

Let us define in this way

f1 fa massm,, and couplingi,, renormalizes as if the other fields
a - _aa .
Niy(ag, ... a0 \No(ay, .. .0 were absent. First we introduce renormalized coupliggs
by
Here Ni(aq,...,a) is the number ofa;=1, whereas .
Ny(aq, ... ,a) is the number of;=2. Uaa= 12y Zaelaar a=12 (20
As a special case we may derive the vertex funcfiéh,

for the uy, interaction using the relationI (*22) Uqp= ,u“’Z;llz(;Zlleglz. (21)
=aldu %), which is obvious from the perturbation
theory (see[30] for instancé: Here u is a scale parameter equal to the renormalized mass

at which the massive scheme is evaluated and sets the scale
of the external momenta in the massless scheme. The renor-
malization factorsZ¢a,Zab are defined as power series in the

renormalized couplings that fulfill the RG conditions

F(ldi)zzzf dUlzr(*zz)-

Note that the vertex functionE*2% and I'*11) define a
vertex function with ag? insertion which in standard litera- P
ture is denoted by %) [39]. With the same formalism we Z4 (Gaa)—5 T 52 (Uaa(Gaa)) =1, (22
can also describe a star bmutually avoiding walk$11,12. Ik

In this case all interactions on the same chajp vanish and

e 2 (4) — ¢
only thoseu,, with a#b remain: Z4,(9aa)l aaaa(Uaa9aa)) = 14" Gaa; 23
F(JAf\Bv:F(*f)|u2b:(1—5ab)u12- (19 Z4,(919Z4(92) T 11oAUan(Gap) = 1o (24)
In this case each term with indices, ... ,a, acquires a These formulas are applied perturbatively while the corre-
factor (f/k)k!. sponding loop integrals are evaluated for zero external mo-

As is well known, ultraviolet divergences occur when thementa in the massive approach and for external momenta at
vertex functiong15)—(17) are evaluated naiveld4]. Inthe  the scale ofu in the massless approach as explained in Ap-
next section we apply the field-theoretic renormalization-pendix A. In the massive case the RG condition for the ver-
group approach to remove the divergences and to makex functionT'® reads

transparent the scaling symmetry of the problem. )
Zqﬁa(gaa)rga)(uaa(gaa)nk2:0:M21 a=12. (29

[ll. RENORMALIZATION
o In the case of massless renormalization the corresponding
We apply renormalization-groufRG) theory to make use condition read$39]:

of the scaling symmetry of the system in the asymptotic limit
to extract the universal content and at the same time remove z¢a(gaa)r<ai>(uaa(gaa))|k2=0:o, a=12. (26
divergences that occur for the evaluation of the bare func-

tions in this limit[39,44,43. The theory given in terms of | order to renormalize the star vertex functions we introduce
the initial bare variables is mapped to a renormalized theoryrenormalization factorg, ;. ;. by

This is achieved by a controlled rearrangement of the series 12
for the vertex functions. Several asymptotically equivalent 2111251212

(xf1fp) = O +f
procedures serve this purpose. Here we will use two some- by L Zxtrfl (Uap(Gap)) = p 712 (27)
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In the same way we define the appropriate renormalization 1 . 5
for the vertex function of mutually avoiding walkKMAWSs) +57 79~ 223+ 33((3)]gaat O(9aa),
ngZ(MAWf)FKALW(Ulz(Qab)):M‘s’- (28) a=12 (34)
The powers ofu absorb the engineering dimensions of the 1 e g2
bare vertex functions. These are given by By~ ~€912t 3| 1+ 5+ 5 (01t 920012
Si=f(el2—1)+4— &. (29 1/5 55

+E(2+8+82) 2~ =+— —§J 2493

3 9127 gl 7 T16° " 2¢ (9111927
The renormalized couplingg,, defined by relationg20)

and(21) depend on the scale parameterThe renormaliza- 1 15 s
tion Z factors are power series ig,, and thus implicitly X012~ g| 3+ 78_338)(911+ 922912
depend onu. This dependence is expressed by the RG func-

tions defined by the relations

1 3 1 3 3
—5(2+58—2J8)g1,+ £7(15-3)(9111 02,012

M%gabzlgab(ga’b’)’ (30 +i 2—7+9g(3)—6J (0% +02)0° 1
7 911+ 929912 57(7—3J)
d 1
H g M0 Mo (Gaa): 3D X 0110295+ 5[ 12+ 6£(3)~ 23] 011+ 0203
d 1 4 5
Malnz*flfzz 7w 1,1,(Jab), (32 +2_7[6+3§(3)_23]912+O(9 ). (35)

d A Here the Riemann zeta function Wi@($)~1.202 and _the
M@InZMA\NF ni " (Gap)- (33  constant)~0.7494 occur. We use an indexat B° to dIS-.
tinguish theB functions obtained in massless renormaliza-
tion with a successive expansion frong™ obtained in mas-
sive field theory.
nent, while the functionsy, ¢ ¢, and 7}"*"(g,p) define the Similarly, performing renormalization in the massive
set of exponents for copolymer stars and stars of mutuallgcheme, we obtain the corresponding functigsls. We
avoiding walks. Note thaZ, ,, renormalizes the vertex func- present them using convenient variabdgg= D5'g., and in-
tion with a ¢? insertion that coincides witl' *2%. Conse-  troduce new functiong™ =D3Bg. . HereD} is the one-
quently, the usually defined correlation length critical eXP0-|oop integral calculated ?Nithin maassive field thedsge ap-

nentv is expressed in terms of functiong, oo and 7, (S€@  pendix A). This procedure defines a convenient numerical

the next section Explicit expressions for th@ and 7 func-  gcale for the massivg functions. The expressions for the
tions will be given in the next section together with a St“dyfunctionsﬁm read
Vab

of the RG flow and the fixed points of the theory.

The functionnd)a describes the pair-correlation critical expo-

Vaa

2 o1
IV. RENORMALIZATION-GROUP FLOW By = _(4_d)Uaa{1_ 3 '9 22('1— >
AND THE FIXED POINTS:
& EXPANSION AND PSEUDO-¢ EXPANSION

+2i,

2
vaa

+--(—89+310,+8i,+3i,d— 12 ;—180 ,—87i5
Here we discuss the RG flow of the theory presented in 27
Sec. lll. In particular, we want to find appropriate represen-
tations for the fixed points of the flow. In a study devoted to —21ig—33i,—12ig)vd, +O(v®, a=12. (36
ternary polymer solutions, the RG flow has been calculated

[30] within massless renormalization and is known to the
third-loop order of thes expansion. Note that for the diago- ,m _ _ ,_
. , ) B (4—d)vq,
nal coupling g,, the corresponding expressions are also
found in the polymer limim=0 of theO(m) symmetric¢*

2 2 2
model. They are known in even higher orders of perturbation 4vi, 2vid;  Buijg
—201 01— T 20wt +

2 2
“U11m U2

V12

1 1
1- §(U11+022+2012)+ §

theory[54]. To third-loop order the expressions read 3 3 3
1 . 2. 2U§2i2 . 2.
By = - 8Qaat 5 (4+26+ 2e2)92, HAvi g+ 20l 5 HAvivniat 2050
1/21 215 Kl
9l T g e 1We g3a +J2k| vl w5, +O(®). (37)
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m_l( e ._1 e )
G U/ Dz—g 1—5 +O(8), |1_§+Z+O(8 ),
® ®
) e
U | S |2=—§+0(82). (42
[ [

A second possibility is to proceed directly in a fixed di-
mension of spacd=2 or 3 substituting numerical values for
U! S the loop integral§56,57. For the massive two-loop ex-

° pansion the fixed points read

912
922 3 11172 42
oo 9s=74 " 128 “3
0 Uy
9s 3272
FIG. 4. Fixed points(FP9 of ternary polymer solution. The gU:§+ 256 (44)
trivial FPsGy, U, Uy, andS, correspond to the vanishing mutual
interaction. The nontrivial FP&, U, U’, andS correspond to the 3 3e2
nonvanishing mutual interactiorg{,# 0). X

Herei; are the dimension-dependent loop integrals, normal-

ized by the one-loop integral valusee Appendix A Ex-  Only the first order of these results coincides with the fixed-
pressions for the coefficients®' are given in Appendix B. point values of the massless renormali;ation .sch[ﬁﬁ]a. It
Note that thegB function for the diagonal coupling,, is is well known that the values g functions, fixed points,
known within the massive scheniB0] to the order of six ~and other intermediate functions in general depend on the

loops[55]. RG scheme; only the critical exponents and other observ-
Let us solve the equations for the fixed poirisP9  ables will be independent of the scheme followed.
P({931,95,,0%,) of the B functions, We will now study expression@6) and(37) directly at a
fixed dimension. In this scheme the usual way of finding the
3;aa(g;a)=o, a=1.2 (38a fixed points of3 functions of models with several couplings
involves the numerical solution of the system of equations
,3512(9’{1,9’52:9’1‘2):0- (38h  (38). To this end the asymptotic series in the coupling con-

stants are represented in the form of corresponding re-
O es )
As is well known, Eq.(389 has two solutionsy*.=0g% . symmed expression® . [58]. However, _the_numencal solu-
a.38a Yaa™ ¥ Is tion of the resummed fixed-point equation in general leads to

For Eq.(38b) one finds a total of eight FPs depending on the. . : .
choice of g*,. The trvial FPs are Go(0,0,0), inconsistent results, as we will show in Sec. VI. An alterna-

tive to this procedure and thus a third possibility to proceed
_UO(g,SC’O’O)’ Uo(0.95.0), _ar_1d80(9§ ,95,0), all correspond- was originglly proposed by Nickel ar?d may }k;e c?alled a
ing to g3,=0. The nontrivial FPs are found &3(0,005),  pseudos expansior59]. To our knowledge, it has not, until
U(95.090), U'(095.9(), andS(gs .95 ,93). In the three-  now, been applied to theories with several couplittgse
dimensional space of couplings;,92,,9:2 these FPs are [57]), although it seems a convenient tool to circumvent the
placed at the corners of a cube deformed inghedirection  specific difficulties arising for the massive approach. To ap-

(see Fig. 4 Theire expansions reafB0] ply this method, we introduce the “pseudd-parameterr
3 33 into the expressions for thg functions 8. ,,8;”12 in Egs.
& & aa
g’é=7— J+ 55(3)>?, (39 (36) and(37) as
4v
9¢ 3%2 |[267 693 189 —B™ /(4— 22 -
9U2§8+ 256+(4096_ 10243 5127 )*" Pra (47 Draa=r™ 75 i
(40 1
J— m f— —_— —_—— .« ..
3 152 [ 111 99 3, By J(A=d)v1p= 71— 2 (vart vt 20+ -+ (46)
95=7 * 128 *| 2028 28653 128’ 4V

We solve for the fixed-point solutions as series7inThe
For the evaluation of the fixed points of tifefunctions  resulting series for the fixed points then either can be re-
calculated in the massive sche36) and(37) (as well as of summed(to obtain the numerical values of the fixed pojnts
the other quantities of the thegryone has several alterna- or can be substituted into the expansions for the observables
tives. The first possibility is to introduceexpansions for the of the theory. In the final results we substitute 1.
loop integrals. For massive renormalization these are known Performing this procedure, we get the fixed-point values
for the one- and two-loop integra(see[45]): as series in the pseudoparameterr up to the orderr:
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9ig 9i 9i = , 51
UG=3/27'+(3i1—3/2)T2+(—?6—714-3/84-12@—74 Myt = Mtytal Gavllo &Y
27i5 9, n?lfzz 77~,'<flf2(gab)|U:77~kf2fl(gab)|u’1 (52

A @n
7y = 9" (gap)l6 - (53

9_T (&_9_3+ﬁ) P2 ( 381 % & The exponent in the symmetrical Fcan also be expressed
32 64 32 512 64 64 by 77+, =ni +r,0- Starting from the expressions for the

Vy= 8
1281, 459 693, 27i; 369, 1485 3i§ fixed points given in Sec. IV and relatiof0)—(53), we find
+ —t——t—t+—+ —— the series for the star exponents. In thexpansion we ob-
256 512" 512 128 64 212 64 tain the following expansions f017flf2:

9i,i, 9692 27di
& & 5122)73' (48) G e e?
77f1f2(8):_f1f2§+f1f2(f2_3+f1)§
3i2 33|1 33 27i2 26]]5 83
vs=3/Ar+| 7=+ 75 —3—2)72 (3/4—5— 128 —fafa(f,= 3+ 1) [f1+ 543 ((3) =3,
135, 261, 63 3i3 33i,; 9di, 99 (54)
32 64 128 32 16 @ 128 128
&
9is 9iy 363.%| , T, (e)=f1(1— 1= 3f,) +f1(25-33f, +8f{ - 91,
BTk “9 )
&
+42f £+ 18f2) — + f [ 577— 969 ; + 4562

Expressions(39)—(41) [30] and (36)—(49) give the fixed- 256
point values of ternary solutions in the massless and massive

3 2 2
renormalization schemes and are the main results to be used —64f1 — 246 5+ 22901, f, — 492f1f,+ 10503

in the subsequent calculations. —504f,f5— 108f3— 712(3) + 936f, £(3)
Looking for the stability of the above-described fixed 2 2

points, one finds that only the fixed poi@itis stable[30]. In — 224£27(3)+265% ,£(3) — 1188 1 f,£(3)

the excluded-volume limit of infinitely long chains, the be- 3
. .9 . s

havior of a system of two polymer species is thus described _540f§§(3)] (55)

by the same scaling laws as a solution of only one polymer 4096’

species. Nevertheless, taking into account that real polymer

chains are not infinitely long, one may also find crossover VAW £ g2
phenomena that are governed by the unstable fixed point&s,r, (8)= = (fa= 1)y 7+ T2 (f1=1)(2f1=5) 72
Knowing the complete RG flow allows one to describe cross-

over phenomena in the whole accessible redR&®]. How- —(f;—1)f,[4f5—20f,+8f,£(3)

ever, for the purpose of our study we are interested only in 3

the values of the fixed points and the properties of the star _ &
vertex functions at these fixed points. 19§(3)+25]32' (56
V. RESULTS FOR EXPONENTS Here {(3)=1.202 is the Riemann zeta function. The above

formulas reproduce the third-order calculations of the scaling
For homogeneous stars of polymer chains of one speciasxponents of homogeneous polymer starg;—1
alone, several sets of star exponents have been defined, eaehy( ,ﬁ’o_fy,go) [32]. The exponenta ® given to second

describing either the scaling properties of the configurationaprder in Egs.(xx) of [5] to describe the multifractal scaling
number[see formula(3) of this articlg or the anomalous properties of a Laplacian field with fractal boundary condi-
dimensions of star vertices, etc. Due to scaling relationsjons are  reproduced  following A?9(n)=— 7S,
these exponents can be expressed in terms of each[@fHer A@D(n)=— ng’nJr ng'O' )\‘(948)(n): _ 77(13,n1 and )\g49)(n)

In this sense, each set of star exponents forms a complete  ~u

. = —71,, Correcting a misprint in Eq49) of [5]. Also the
basis. For the copolymer and MAW stars, we here cMhAc\)A?se tgecond-order results for exponents X, n—X. 1

present our results in terms of the exponents, and n; :_2(77:_3“_ 77&) of [1] and the MAW exponents

given by the fixed-point values of the functiong r,r,(9an) &, = 1/2;AW defined in[11] find their third-order extension

(32) and 71"V (gap) (33). Let us define the asymptotic val- by the above expansions. The pseudexpansions foryy 1,
ues of copolymer star exponents and MAW star exponent§pisined in the massive scheme read

by

7_2

8

fafa

756, = Tat,1,(Gan) s (50) Mg, = Te 5|~ 1+ (f=3+ 1| 7 (i1-1/2)+
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TABLE I. Values of the copolymer star exponent 1, obtained in the first, second, and third order in the
Gaussian G) fixed point in thee expansion and pseudo{7) expansion for different values df;,f, at
£=1 (d=3). R stands for the results obtained by P&tmel resummation of the three-loop series.

fi fy ~g ~g? ~g3 R ~T ~7? ~7 R
1 1 —0.50 —-0.63 —0.46 —0.56 —-0.50 —-0.58 —0.56 —0.57
1 2 —1.00 —1.00 —1.00 —1.00 —1.00 —1.00
1 3 —-1.50 —-1.13 -1.99 —-1.36 —-1.50 —-1.25 —1.42 -1.34
2 2 —-2.00 —-1.50 —2.65 —-1.81 —-2.00 —-1.67 —1.93 —-1.80
2 3 —3.00 —-1.50 —-5.71 —-2.50 —3.00 —-2.00 —-3.01 —2.45
3 3 —4.50 —1.13 —12.27 —3.48 —4.50 —2.25 —-5.09 —-3.37
X[32(i;—1/2)2+ 6ig— 18 ,— 8+22i;— 6i,—6ig work G. To receive an appropriate scaling law we assume the
) network to be built of chains that for both species will have
7 : ) .
—(f-—34f)(2+6i,—6i (f,f a coil radiusR when isolated.
(f2= 0 o 1)]> 22 For the sake of completeness we give also the results in
the ¢ and pseudae- expansions for the correlation length
><(1+3i5+3i5—6i1)}, (57)  critical exponent v=1/(2+ 70— 174) and the pair-
correlation function critical exponeng, in the nontrivial
fixed point:
fi
n?1f2 € 103 4( 128—128f; — 384f ,+ 7[ (288 ,— 144 f3 8z 173 o
76(8) =62 " 1024 (61)
—208+416,+32i,+(272—32i,— 544 ) f,
. 1 1 15 135 33¢(3)
+(—32i,—1472,+ 736 f,+ (— 64+ 128 ,)f? b e g2y | 2 2 ) 3
( 2 1 ) fo+( Df1 v(e) 2+168+5128 (8192 1024)8 , (62
+(—336+6724))f1f,]+72 > F2nu. i |, —(4—d)
ki kg 74(1) = —5g (1675~ 127%i ,— 247%i g+ 87212
(58)
+887%i4i,), (63
MAW f(f—-1) : :
n U =TE€E {—4—(20i,—10+4f-8fiy) 7 1 4-d
(r)=5+ T— (4 40+ 8i,+4d) 72
. } : . . : 2 1 12
+[(—3ig+18;—12 ,—3ig—5)f?+(3i5+ 322 6 5
. , . ! . . 4—
+12i5+ 106, —80i{—30i,]72}. 59
51106, -801~30,)7} ®9 —12ig— 2202+ 4i2+ 24i i, — d+ 101 ,d
The expressions for the three-loop termsy, ., in Eq. (58) d2
are given in Appendix B. It has been pointed ou{%} that —2i,d— 7) 73 (64)

for the exponent;$,= —\(?%(1) (see abovean exact esti-
mate equal to our first-order contribution may be found. It is
indeed remarkable that all higher-order contributionsﬁg VI. RESUMMATION

appear to vanish in both approaches. _ As is well known, the perturbation series expansions of
With these exponents we can describe the scaling behayenormalized field theory are nonconvergent, but generally
ior of polymer stars and networks of two components, genassumed to be asymptotic. For the exponents, this be-

eralizing the relation for single-component netwojRé]. In havior is indicated in the corresponding Columns of Tables |
t_he notation of Eq(4) we find for thg number O.f configura- and Il, where the series are summed without further analysis.
tions of a networkg of F, andF, chains of species 1 and 2, ¢ increase in the coefficients of the high-order terms of
perturbation theory series may be estimated using informa-
tion such as the combinatorial growth of the contributions
with ordir. The series for thg function of theO(m) sym-
; __ metric ¢* model with one couplingy has the asymptotic

with g dL+fl+22>1 Niyr, 71,1, (60 behavior[60,61]

Zs~(RI/) g~ F1m20~Fam0z,

where L is the number of loops antsllflf2 the number of
vertices withf; andf, arms of species 1 and 2 in the net-

ﬁ<g>=§ AgX, (65)
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TABLE Il. Values of the copolymer star exponent , obtained in the first, second, and third order in
the unsymmetrical ) fixed point in thee expansion and pseudo{r) expansion for different values of
f,,f, ate=1 (d=3). R stands for the results obtained by P#&fmel resummation of the three-loop series.

fq fs ~e ~g? ~g3 R ~T ~7? ~7 R

1 1 —0.38 —0.50 -0.28 -0.43 —0.38 —0.46 -0.43 —0.44
1 2 —0.75 -0.85 —0.69 —0.80 -0.75 -0.82 -0.78 —0.80
1 3 -1.13 -1.07 -1.33 -1.11 -1.13 -1.09 -1.11 -1.10
2 1 —1.00 —0.98 -0.71 —1.00 —1.00 —0.99 —0.98 —0.99
2 2 -1.75 -1.37 -2.37 -1.62 -1.75 —1.50 -1.71 -1.60
2 3 —2.50 -1.47 —4.99 -2.19 —2.50 -1.82 —2.56 -2.13
3 1 —1.88 —-1.28 -1.70 —1.50 -1.88 —1.48 -1.82 -1.64
3 2 —3.00 —-1.36 —6.19 —2.47 —3.00 —-1.91 —3.18 —2.43
3 3 -4.13 -1.02 -12.83 —3.26 —-4.13 —2.06 —4.97 -3.14

A=ckPo(—a)*kI[1+0O(1k)], k—oo. (66) the origin is located at the point(1/a). Conformally map-
ping thee plane onto a disk of radius 1 while leaving the
The quantitiesa,bg,c were calculated i160,62. A similar  origin invariant,
behavior is found for the critical exponents expressed as a
series in powers of the coupling. The same results also apply (1+ag)?-1
to the divergence of the and pseude- expansions derived W:m’
above. The property66) indicates the Borel summability of

the serieg3(g) [63]. The Borel resummation procedure takes ubstituting this intd®(¢), and expanding i, we receive
into account the asymptotic behavior of the coefficients and, ¢aries defined on the disk with radius 1 on theplane.

maps the asymptotic series to a convergent series with theyiq series is then resubstituted into Eg9). In order to
same asymptotic limit. The functioBia, (30) coincides with \ye51en 4 possible singularity in theplane the correspond-
the O(m) symmetric 8 function (65) in the polymer limit .4 oy nression is multiplied by (2w)® introducing an ad-
m=0. So its asymptotic behavior is known. The asymptotiCyjsional parametee [66]. In the resummation procedure the
behavior of the off-diagonaB function 5;, was found by \51ye ofa is taken from the known high-order behavior of
Instanton gnaly3|$see[64,6ﬂ) in [30]. ) . the e-expansion series, while is chosen in our calculations
Let us introduce the techniques for resummation, UsiNGyq  fit parameter defined by the condition of minimal differ-
the known asymptotic behavior of the series. Here we applynce petween resummed second-order and third-order re-
the PadeBorel resummatioi50] and a resummation refined g ts The resummation procedure was seen to be quite in-

.by a cqnformal mapping66]. The firgt way (_)f resummation o ngitive to the parametér introduced in the Borel-Leroy
is applicable only for alternating series, while the second On‘fransformatior(GS) [51].

is more universal. The resummation procedures are as fo
lows [50,51,63,66 For an asymptotic series

4 w
a(1-w)?’

For the resummation of the exponents ¢, we take into
account the combinatorial factors that multiply each contri-
o bution according to the numbers of chaifisand f,. We
fe)=2 flel, (67) include an additional factorf( + f,)* for the kth-order con-

! tributions, multiplying the constara by f,+f,. For resum-
mation of the series at the fixed poin% G, and U, the

one defines the Borel-Leroy transfofifi(e) of the series by following values ofa—aS a®,a! are used60.30;

fgi s .G
Blg)=> — aS=a®=3/8, a"=27/64. 70
f8(e) ;r(j+b+1)’ (68) (70)

. _ . _ By analogy we use the same procedures developed far the
with the Euler Gamma functiorb(is a fit parametgr Then  expansion also for the expansion, which we assume to have

the initial series may be regained from the same asymptotic behavior as it is in the same way col-
lecting contributions of the same loop order.

fres(s):f dt tPe~tfB(zt). (69) Let us note here that_the conventional resummation pf the

0 B functions in the massive approach leads to a severe incon-

sistency, which is the reason for us to take the pseudor
Substituting forfB(&) its analytic continuation in the form of 7-expansion method. The distinct feature of tBg, func-
a Padeapproximant and evaluating E@9) for the truncated tions introduced here is that they are functions of different
series, this procedure constitutes the PBdeel resumma- numbers of variables, which leads to ambiguities in their
tion [50,63. The conformal mapping technique in addition analytical continuation via Padgproximants or rational ap-
uses the constat in Eq. (66). Assuming that the behavior proximants of several variabldsee[67]). Let us illustrate
(66) holds also for the expansion &f<) in &, one concludes this for the example of the two-loop approximation. The cor-
that the singularity of the transformed serf€§e) closest to  responding expressions read
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TABLE Ill. Values of the copolymer star exponenﬂslf2 at d=3 obtained by the expansion §) and the fixed-dimension technique
(3d).

f, 1 2 3 4 5 6
fy € 3d € 3d € 3d € 3d € 3d € 3d

1 —0.56 —-0.58 —-1.00 —-1.00 —-1.33 -1.35 —-1.63 —-1.69 —1.88 —-1.98 —-2.10 —2.24
2 -1.77 -1.81 —2.45 —-2.53 -3.01 -3.17 -3.51 —-3.75 -3.95 —4.28
3 -3.38 -3.57 —-4.21 —-4.50 —4.94 —-5.36 —-5.62 —6.15
4 —-5.27 =571 —6.24 —6.84 -7.12 —-7.90
5 —-7.42 —-8.24 —8.50 —-9.54
6 —-9.78 -11.07
Bvaa_ —(4—d)vaaf, (Uaa) a=1,2 (71 flr)elsz 0, (74)
By,= —(A=d)viof, (11,022,019, (720 we will never obtain a symmetrical solutiari,;=v3,=v7,

#0. For the fixed pointS we substitutev ;,=v,,=1.1857
with obvious expressions fd, .f, .f, .Inorderto obtain while solving Eq.(74) we obtainv,,=0.9571[70]. The rea-
the analytical continuation of the Borel transformed func-Son is that substitutingumericalvalues of fixed-point coor-
tions of one variabld, (v,,) (71) one can make use of the dinatesvy;,vz; into Eq.(74) we lose information about the
[1/1] Padeapproximant. Solving the corresponding nonlin- contributions to the fixed-point value from different orders of
ear equations numerically, we find for the nontrivial fixed the pertur.ba'tlon thef’ry series. So,'t, appears quite natural to
poiNt S, v1,=v,,=1.1857[68]. In order to apply a similar restore this information by generalizing the pseudexpan-
resummation technique to the functioy (011,022,012 sion[59] to the case of several couplings as described in Sec.

12 1 L

(72) one can make use of a generalization of Pagproxi-
mants to the case of several variables, i.e., represent the

Borel transformff12 of f,J12 in the form of a rational approx- Vil. NUMERICAL RESULTS

imant fP of three variable$67] In the following we present our numerical results for the
; exponentsyg . ny,, and 7i". The exponent in the
fvlz(vllt’vﬂt’vﬁt) symmetrical fixed pointS is included due to the relation

t1,= Mr,+1,0 [71]. Numerical results for the exponent
—1=v(75o—f 75, may be found in the: expansion in
[32] and in the pseude-expansion if72].

C1ta(v11,022,0 1t T p(V11,022,01D)
1+Db(v11,022,012t

(73

In spite of the fact that the rational approximd@B) pre- A.d=3

serves the projection properties of the initial se(i3), i.e., Let us first consider the cask=3. Tables | and Il show
setting any pair of variablef11,v,,,015} €qual to zero in  some of the resummed results for thend r expansions in
Eg. (73) one gets the appropriaté/1] Padeapproximant for comparison with the naive resummation of the series. While
the remaining variable, the “global” symmetry is not pre- the nonresummed results differ to a great extent for the two
served. Due to different analytical continuations for theapproaches at high,,f,, resummation shows that the two
Borel transforms of the serig31) on the one hand and the schemes yield consistent numerical estimates. Tables IlI-V
series(72) on the other, solving the fixed-point equation for list our final results using the resummation procedure refined
the resummed function by the conformal mapping technique as described in Sec. VI.

TABLE IV. Values of the copolymer star exponenk’lf2 at d=3 obtained by the expansion §) and the fixed-dimension technique
(3d).

0 0 0 -028 -028 -075 -0.76 -136 —-138 —-2.07 -—-214 -2.88 —-3.01
1 -043 -045 -098 -098 -164 -167 —-239 —-247 -321 -338 —-411 —4.40
2 -079 -081 -158 -160 —-244 -252 -333 —-350 —-428 -—-457 529 —5.73
3 -109 -109 -213 -219 -316 -330 —-420 —-448 528 571 -641 —7.03
4 -13 -137 -261 -—-271 —-382 —-404 -502 -540 -6.24 —-681 —7.48 —8.28
5 -160 -164 -3.05 —-321 —-444 —-475 -580 -630 -—-7.15 -—-7.89 851 —9.50
6 -181 -189 -346 —-368 —-501 -542 -653 -—-715 -—-802 —-892 -950 -10.69
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TABLE V. Values of 7} exponents of star of mutually
avoiding walks atdd=3 and 2 obtained by the expansion §) and G

Y =77

the fixed-dimension technique §2d). The last column gives the 0 Nfy ~‘V....:..:.:.:.....'..
exact conjecture al=2 [11,17. 5 e*:é‘:g...:..:.....'

d=3 d=2 '£
f € 3d € 2d exact 20
1 0 0 0 0 —.250 5 1 0
2 —.56 —.56 -1.20 -1.19 —1.250 0 2 3 1 3 654 n
3 -138 -136 -271 -260 —2.9166) 2 ‘
4 —-2.36 —-2.34 —-4.36 —-4.07 —5.250
5 —3.43 —3.43 —6.04 —5.61 —8.250 FIG. 5. Exponentr;?lf2 in the “Gaussian” fixed point atl=2
6 —4.58 —4.64 —7.78 —7.17 —11.9166) obtained in thes expansion and in the fixedl scheme. Steps on the

“flying carpet” correspond to the difference of the results of the
) ) ) ) two renormalization-group approaches. The diagonal line shows the
Comparing the numerical values listed in the aboveyaluessS;.

tables, it is convincing that the two approaches and the dif-

ferent resummation procedures all lead to results that li@ppropriate short-distance behavior. This is also illustrated in
within a bandwidth of consistency, which is broadening forthe next subsection by Fig. 5, showing the spectrum of ex-
larger values of number of chairis,f,>1. This is not sur- ponentsnafz in the 2D limit. The opposite convexity along
prising as we have seen in Sec. V that our expansion paranthe diagonal as opposed to each of the two axes is clearly
eters are multiplied by, andf,. Rather it is remarkable that seen for these combinations of two random-walk stars that
even for a total number of chains of the order of (5e  mutually interact.

Tables Ill and I\J we still obtain results that are comparable

to each other. B.d=2

It seems noteworthy that at least for low numbers of . . .
chains ,+ f,~4) the nonresummed expansion seems to While two-dimensional star polymers up to now have not

give results that do not differ essentially from the resummed©Und an experimental realization, their study is of some the-
values. Also the nonrefined PaBerel results of ther ex-  °oretical interest. It has been shown that the scaling dimen-

pansion are closer to the refined summation ofdhexpan- sions of two-dimensional uniform polymer stars belong to a

sion limiting case of the so-called conformal Kac tah8—75.
: They have been calculated exactly by Coulomb gas tech-

Does the data answer the question of convexity of the'

spectrum? A close study of the matrix of values reveals, tha?'ques[l7'35:|' An exact relation has also been proposed for

for fixed f, both ﬂ?f and 7719f are convex from above as Stars of mu_tual_ly avoiding walkgl11,17. But it is still an
1’2 1'2 open guestion if exact results for the copolymer star system

functions off,, thus yielding “multifractal(MF) statistics.” 3y pe derived in this formalism. Our numerical results for
The relation to a MF spectral function féf=1,2 has been o exponentsn?f n%)f and 77wf\w are presented in
112? 1'2?

pointed out in5]; it is analyzed in close detail in view of the
present data and field theoretic formulation elsewfi88 Exact results for exponents of two-dimensional systems
On the other hand, also copolymer stars should repel eacﬂ P Y

other. This is found to be true as well; the correspondingI at are described by a conformal field theory with Ce‘_‘"a'
convexity from below shows up, e.g., along the diagonalChargec<1 may be taken from the Kac table of scaling

values 7;; as a function off. The general relation dimensiong73-79

Mt t,+ Me115Z My 10,61 is always fulfilled. Thus, even [(m+1)p—mqg)?>—1

though simple power-K) of-field operators¢* do not de- hp,q(m)= Am(m+ 1) : (79
scribe MF moment$1], they may be written as a power-

(L+k) of-field operators of suitable symmetry that have thewherep,q are integers in the minimal block

Tables VI, VII, and V, respectively.

TABLE VI. Values of the copolymer star exponenflf2 at d=2 obtained by the expansion §) and the fixed-dimension technique
(2d).

fa 1 2 3 4 5 6
fy € 3d € 3d € 3d € 3d € 3d € 3d
-120 —-122 -198 -—-198 -256 —-258 —-299 -3.04 -—-3.36 -3.43 —3.68 -3.78
-3.41 —-345 —-449 -459 -537 -552 -6.13 -6.34 —6.80 -7.04
-6.05 -6.23 -—-736 —7.63 —-8.49 —8.84 —-9.50 —-9.91

-9.06 -944 -1055 -—-11.03 -11.89 -—1245
—12.38 —-1298 —-14.03 -—14.74
—15.99 -16.81

o0k WN P
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TABLE VII. Values of the copolymer star exponew)#’1f2 atd=2 obtained by the expansion §¢) and the fixed-dimension technique
(2d).

\fl 1 2 3 4 5 6
fy € 3d € 3d € 3d € 3d € 3d € 3d
0 0 0 -059 -062 -—-151 -—-1.53 —2.61 —2.63 —-3.84 —3.89 —5.18 —5.28
1 —-091 -09 —-194 -196 -—-311 -—-3.13 —4.35 —4.41 —-5.71 —5.83 —-7.17 —7.35
2 —-162 -163 —-3.05 —-3.09 —-449 -454 —5.94 —6.06 —7.46 —7.64 —9.04 —9.30
3 —-216 -216 -—-400 —-4.04 -570 -5.80 —7.39 —7.57 —9.09 —-9.35 —-10.82 —11.17
4 —260 -264 —-480 —-483 -6.79 -6.96 —8.72 —8.97 —-10.61 -—10.95 -—1252 —12.95
5 -3.00 -303 -552 -563 —-781 -—-8.01 —9.96 —10.27 -—12.06 -—12.47 -1414 -—-14.65
6 -334 -339 -6.17 -6.33 -873 —-899 -11.12 -—-1149 -—-1343 -—-1391 -—-15.69 -—16.27
1<ps=m-1, 1=<q=p, (76) In two dimensions however, each chain of a star will in-
teract only with its direct neighbors. A star described here by
andm is connected with the central chargeoy 7% will behave like a MAW X star if each species-1 chain
has two neighbors of species 2, whereas it will behave dif-
c=1-6/m(m+1), m=3. (77 ferently if the chains are ordered such that each species is in

) ~one bulk of chains. The 2D copolymer stars in this sense
The exact result for the star exponents of uniform stars ieyeal an even richer behavior. Thus the copolymer generali-
two dimensions is obtained in the sublimiting caseo#2  zation of the MAW star adds another problem, for which a
(which means=0) for half integer values op [17,35, rigorous formulation in terms of an exactly solvable 2D

) model is yet to be found.
Xf:2hf/2’0:(9f _4)/48 (78)

The scaling dimensior; is related to the exponent; by VIIl. CONCLUSIONS AND OUTLOOK

1 Several reasons motivated our study. First, we intended to
Xi=5f(d=2+n)— 7. (79 reveal the scaling behavior of copolymer stars and networks
in solutions generalizing former studies of homogeneous
For the exponents of the star of MAW the following result polymer networks.'This includeq revisit.ing the theory of ter-
was conjectured fod=2 [11,12,14: nary polymer s_olutlons and adding an |r_1d¢_apendent a_pproach
to the calculations. Second, the description of multifractal
1—4f2 spectra in terms of random walk5] promised to prove the
I (80 relation of field theory and multifractals for this case. In
particular we intended to check the convexity properties ex-
tpected for the spectrum of exponents. A third motivation
arose from the known peculiarities of polymers and polymer
tars in two dimensions. Apart from numerically verifying
0Erevious results on polymer and mutually avoiding walk

MAW __ [ MAW __ _
ne =X =2hgs=

These values are shown in the last column of Table V. Plo
ting the resummed data foff"*"V from Table V with respect
to f2, one finds good agreement with the conjectured slope

—13. . , , stars, we pose the question of finding an exactly solvable
The qualitative behavior of the exponeﬁyflfz in the  (conforma) two-dimensional theory for general copolymer
Gaussian fixed point is shown in Fig. 5. The steps in thestars.
“flying carpet” correspond to the difference of the results of ~ We have extensively studied the spectrum of exponents
the two RG approaches. Note that the curvature of the sugoverning the scaling properties of stars of walks taking into
face along the diagonal in tHg-f, plane has opposite sign account the self- and mutual interactions of a system of spe-
to that along each of the axes. From this curvature it is obeies of polymers. Our study was performed in the framework
vious that the dependence of the exponent gri, may not  of field-theoretical RG theory using two complementary ap-
be described by a simple second-order polynomial. The begfroaches: the renormalization at zero mass in conjunction
fit we could find to our resummed data using a simple for-with the ¢ expansion and massive renormalization at fixed
mula that reproduces the vanishing result fgr+f,=3 dimension with numerical evaluation of loop integrals. We

found in thee expansion reads have formulated the problem of finding the scaling expo-
nents of stars of interacting and noninteracting walks in
nofoP=—fifla+b/(f1+f;)], a=1/4, b=3(1-a).  terms of the determination of the scaling dimensions of com-

(81) posite field operators of Lagrangian field theory. On the one
hand, this allows for the application of well-developed for-
Note that the right-hand side of E(B1) vanishes iff; or f,  malisms and methods for analyzing the scaling properties.
is zero according to our perturbative results. This might be @n the other hand, this defines these families of exponents
defect of the perturbation theory as a finite result may beextending previous sets in the framework of Lagrangian field
expected ird=2 as in Eqs(78) and(80) evaluated fof =0.  theory. Our results agree with the previous studies of special
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9 —u4
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FIG. 6. Graphs of function§®, T'® in the three-loop approximation. Graphs 13 and 14 represent additional contributions to the
functionT* V), In graphs 13 and 14 thivertex is indicated by a box.

cases that were in part done only to second order ofsthe function 71,1, (see Fig. % of the two variables,,f, along
expansion. We have here considered the general case ofedch of the axes in thi-f, plane has the opposite sign to
star of two mutually avoiding sets of walks, the walks of the curvature along the diagorial=f».

each set either self-interacting or not. Also we have studied |t js this fact that shows that the series of exponepts
the case of a star of mutually interacting walks. All calcula- 12
tions were performed to third order of perturbation theory.

The sets of exponents are given in thexpansiorjformulas of a fractal probability measure fulfills exact conditions of

(54)—(56)] and in terms of the pseudoexpansiorjformulas : o
(57)—(59)]. The latter has proved to be a most suitable tool toconvexr[y. Deriving such a MF spectrum, however, from the

luate thi ve th taini | i scaling dimensions of a series of composite field operators is
evaluate this massive theory containing serveral coup IngSonly possible if the scaling dimensions show the appropriate

We have shown that the conventional way of direct SOIUtIonconvexity[l]. This in fact is given for our case and the series

even of the resummed expressions for .the fjxed points of th f exponents may be related to the MF spectrum generated
theory would lead to severe problems in this case. We hay harmonic diffusion near an absorbing fracal. This

evaluated the series obtained in both approaches for SPaGEs o allows for a field-theoretic test of results for the short-

dimensionsd=2 and 3. Numerical values are produced bydistance correlations on multifractdl$0]. This relation and

careful resummation of the.asymptotlc SEries using the "Che calculation of the MF spectrum on the basis of the results
sults of an instanton analysis of the three-coupling proble resented here are subjects of a separate &8k
[30]. For comparison we have also given the results of naiv

summation as well as standard Pd&terel resummation for
selected cases. ACKNOWLEDGMENTS
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The study we performed for two dimensions might have APPENDIX A: LOOP INTEGRALS—GRAPHS,
no direct application to the physics of real polymers, but it £ EXPANSION, AND NUMERICAL VALUES
could perhaps give some insight to the problem of mapping
our theory to a two-dimensional conformal field theory. The  This appendix is devoted to the contributions to perturba-
resummed values of the exponents for stars of mutuallyion theory, their representation in terms of Feynman graphs
avoiding walks are in fair agreement with an exact resul@nd their corresponding loop integrals, and the evaluation of
previously conjectured11,12. The exponents for the case these integrals for the two RG approaches. Figure 6 shows
of stars of two mutually avoiding sets of walks, on the otherthe Feynman graphs up to third loop order representing the
hand, show a dependence on the numbers of walks that ma@@ntributions to the function§® and T™® (we keep the
not be described by a second-order polynomial as derivelibeling of[56]).
from the general Kac formul@73—79. This may be seen Each contribution td"* ") contains the composite opera-
already qualitatively from the fact that the curvature of thetor Hif: 1%a, only once. The relevant graphs can be obtained

is a good candidate for finding its application in the theory of
MF spectrd 76]. The MF spectrum describing the moments
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TABLE VIII. Values of the loop integrals. The graphsn2t —5- 1362
s3 indicate the derivative of the two-point functiandk?T ? (k). |g:; 1+ 28+ T)
€
Integral Integral Integral

Graph value Graph value Graph value £(3) 1

15= . 15=——(1+2¢). (A1)
2-u2 D, 8-u4 Iy 14 1,D, 2e 6e2
3-u3 D3 9-ud Is 2-ml 0
4-u3 I 10u lg 3-s2 I, Here the values of derivative®/ok?® of the function
5-u4 D3 11-u4 I 4-m3 0 I'®(k) are given at the poirk?=1. In the massive renor-
6-ud 1,D, 12-u4 I, 5-s3 lg malization scheme loop integrals are calculated at non-zero
7-u4 I3 13 D3 mass and zero external momeifta distinguish from Eq.

from the usual four-point graphs-2u2—12—u4 by consid-

(A1) we will label them bym]. The mass renormalization
introduces a higher-order correction to the propagator, which
has to be taken into account in our calculation only in the

ering each vertex in turn to describe the composite operatofirst-order termsee Eqs(16) and(17)]

In the three-loop approximation we consider here two more
graphs contribute that cannot be produced in this manner.
They are labeled 13 and 14. In Table VIII we show the

correspondence between the numerical values of the loop

1
aja, 2 2
D3*?=D,+ §|2D21(ua1a1+ua2a2)-

integrals and appropriate Feynman graphs.
A diagram withL loops is to be multiplied byrg with

1
241920 (df2)’

O4d

HereD,,=(4—d)/4. This value has been substituted into the
results for theB functions and fixed pointsD,; does not
enter expressions that are independent of the RG scheme,
such as the resulting exponents. The integrals can be either
expandedsee formulag4?2) from this article for instancleor
numerically calculated at arbitrary space dimensi&ts57).

In particular, for dimensionsi=2 and 3 they are given in

but this factor can be absorbed by redefinition of the couTable IX with the normalization

pling constanty),,—gap/04. In the massless renormaliza-
tion scheme loop integrals corresponding to these graphs are
evaluated by the expansion at zero mass and nonzero ex-
ternal momenta chosen at the so-called symmetry point. The

i =1T/(DP)%,  i,=1/(DP)?, ij=1T(DD)3,

expressions reafB9]

i=3,....8.

Note that in the massive scheme the values of the derivative

1/ & &2 1 3s 5g2 Jg2 a1 9k? of the functionI' @ (k) are given ak?=0.
Di=—1+5s+ =], li=—|1+F5+———|,
2 2 2g2 2 2 2
APPENDIX B: THREE LOOP-CONTRIBUTIONS
. 1 S5¢ . 1 15¢ In this appendix we have collected the more lengthy ex-
I3=— 8c uk l3=— " 4 pressions for the three loop contributions to RG functions
and exponents. The coefficierti§! (j +k+1=23) for the
expansion of the functio;zi%{j“12 (37) read
P +3182 3J82)
= & — y . . . .
' oee? 42 paoo_poso_ _ 120 213 184 s 4is
18 9 9 3 9
1 5¢ 232 3Js? - i
o1 22 [, 2 20
3e® 2 4 2 27 3 27

TABLE IX. Numerical values of normalized loop integrais calculated in the massive field-theory

framework[56,57).

iy P

i3 i4

0.781302412896
0.6666666667

is is

-0.114635746230
-0.0740740741

-0.044703881514
-0.0376820725

0.569829439192
0.3835760966

0.659043562065
0.5194312413

w N o wN o

0.650899895132
0.5000000000

0.40068563
0.1739006107

-0.157398409771
-0.0946514319
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wo__Ble_2ic_2i; 14 34, ~ 270+ 2166~ 216,
9 9 9 27 27’
h210= 120 Mu:0:3= — 54— 1624+ 162 ,,
20i, 4i, 2i; 26 70,
b= pE= — —= - = o o Nu1.0=— 1613+ 468 ,— 448 ;i ,+ 160 ,+ 2408, — 252
_ 2, 5o i
2iy, 16, 2i, i,d 28 20, 2i, 29923+ 564+ 4815~ 560,

2779 9 " 3°

The coefficientsnu;kl;k2 introduced for ther expansion of
the exponentn%’lf2 in the unsymmetric fixed point) (58)
read

M0.0:0=328— 1480, — 128 ,— 240 ,— 492 5+ 132 s — 356 ;
—48ig+2288%+ 165+ 384 4i,,
Nu:0:1= — 76802 — 496 i ,+ 5708 + 184 ,+ 1326,
+16205— 588 ¢+204 ,— 1613+ 48 53— 1312,

70:0:2= 570+ 810 4+ 14882~ 24i ,+ 481 i ,— 2154

Nu-1.1=— 5342+ 176 i ,— 88 ,+ 756 s— 594 ;— 252 5
+35362+1638,+ 1346,

ﬂu;l;zz 1188 1_216 5_216 6_7564_324'

MNu:2:0= —1074 1_32|2+ 64i 1i2+ 3364_ 1127+ 144'6
+7043—485+272,

77U;2;l: 1098 1_180 6_7384_ 180 5_306,

7]U;3;0: _40+ 144| 1_24| 6_964_2415
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